Cargando…
Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias?
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, devel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669472/ https://www.ncbi.nlm.nih.gov/pubmed/31266258 http://dx.doi.org/10.3390/v11070596 |
Sumario: | Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface. In this review, we summarize the current knowledge on HSPG–virus interactions and distinguish viruses with established HS binding, viruses that bind HS only after intra-host or cell culture adaptation, and finally, viruses whose dependence on HS for infection is debated. We also provide an overview of the antiviral compounds designed to interfere with HS binding. Many questions remain about the true importance of these receptors in vivo, knowledge that is critical for the design of future antiviral therapies. |
---|