Cargando…

Global Mycotoxin Occurrence in Feed: A Ten-Year Survey

Mycotoxins contaminating animal feed can exert toxic effects in animals and be transferred into animal products. Therefore, mycotoxin occurrence in feed should be monitored. To this end, we performed a large-scale global survey of mycotoxin contamination in feed and assessed regional differences and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gruber-Dorninger, Christiane, Jenkins, Timothy, Schatzmayr, Gerd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669473/
https://www.ncbi.nlm.nih.gov/pubmed/31252650
http://dx.doi.org/10.3390/toxins11070375
Descripción
Sumario:Mycotoxins contaminating animal feed can exert toxic effects in animals and be transferred into animal products. Therefore, mycotoxin occurrence in feed should be monitored. To this end, we performed a large-scale global survey of mycotoxin contamination in feed and assessed regional differences and year-to-year variation of mycotoxin occurrence. Concentrations of aflatoxin B(1), zearalenone, fumonisins, ochratoxin A, deoxynivalenol, and T-2 toxin were analyzed in 74,821 samples of feed and feed raw materials (e.g., maize, wheat, soybean) collected from 100 countries from 2008 to 2017. In total, 88% of the samples were contaminated with at least one mycotoxin. Mycotoxin occurrence showed distinct regional trends and climate was a key determinant governing these trends. In most regions, the majority of samples complied with maximum levels and guidance values for mycotoxins in animal feed that are in effect in the European Union. However, 41.1%, 38.5%, and 20.9% of samples from South Asia, Sub-Saharan Africa, and Southeast Asia, respectively, exceeded the maximum level for aflatoxin B(1) (20 µg/kg). In several regions, mycotoxin concentrations in maize showed a pronounced year-to-year variation that could be explained by rainfall or temperature during sensitive periods of grain development. A large fraction of samples (64%) was co-contaminated with ≥ 2 mycotoxins. Most frequently observed mycotoxin mixtures were combinations of deoxynivalenol, zearalenone, and fumonisins, as well as fumonisins and aflatoxin B(1). Deoxynivalenol and zearalenone concentrations were correlated in maize and wheat. In conclusion, according to an extensive global survey, mycotoxin (co-)contamination of animal feed is common, shows regional trends, and is governed in part by climate and weather.