Cargando…
Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669737/ https://www.ncbi.nlm.nih.gov/pubmed/31277299 http://dx.doi.org/10.3390/v11070607 |
_version_ | 1783440441290522624 |
---|---|
author | Rossenkhan, Raabya Rolland, Morgane Labuschagne, Jan P.L. Ferreira, Roux-Cil Magaret, Craig A. Carpp, Lindsay N. Matsen IV, Frederick A. Huang, Yunda Rudnicki, Erika E. Zhang, Yuanyuan Ndabambi, Nonkululeko Logan, Murray Holzman, Ted Abrahams, Melissa-Rose Anthony, Colin Tovanabutra, Sodsai Warth, Christopher Botha, Gordon Matten, David Nitayaphan, Sorachai Kibuuka, Hannah Sawe, Fred K. Chopera, Denis Eller, Leigh Anne Travers, Simon Robb, Merlin L. Williamson, Carolyn Gilbert, Peter B. Edlefsen, Paul T. |
author_facet | Rossenkhan, Raabya Rolland, Morgane Labuschagne, Jan P.L. Ferreira, Roux-Cil Magaret, Craig A. Carpp, Lindsay N. Matsen IV, Frederick A. Huang, Yunda Rudnicki, Erika E. Zhang, Yuanyuan Ndabambi, Nonkululeko Logan, Murray Holzman, Ted Abrahams, Melissa-Rose Anthony, Colin Tovanabutra, Sodsai Warth, Christopher Botha, Gordon Matten, David Nitayaphan, Sorachai Kibuuka, Hannah Sawe, Fred K. Chopera, Denis Eller, Leigh Anne Travers, Simon Robb, Merlin L. Williamson, Carolyn Gilbert, Peter B. Edlefsen, Paul T. |
author_sort | Rossenkhan, Raabya |
collection | PubMed |
description | Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5–10 days for sequences collected 1–2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection. |
format | Online Article Text |
id | pubmed-6669737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66697372019-08-08 Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment Rossenkhan, Raabya Rolland, Morgane Labuschagne, Jan P.L. Ferreira, Roux-Cil Magaret, Craig A. Carpp, Lindsay N. Matsen IV, Frederick A. Huang, Yunda Rudnicki, Erika E. Zhang, Yuanyuan Ndabambi, Nonkululeko Logan, Murray Holzman, Ted Abrahams, Melissa-Rose Anthony, Colin Tovanabutra, Sodsai Warth, Christopher Botha, Gordon Matten, David Nitayaphan, Sorachai Kibuuka, Hannah Sawe, Fred K. Chopera, Denis Eller, Leigh Anne Travers, Simon Robb, Merlin L. Williamson, Carolyn Gilbert, Peter B. Edlefsen, Paul T. Viruses Article Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5–10 days for sequences collected 1–2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection. MDPI 2019-07-03 /pmc/articles/PMC6669737/ /pubmed/31277299 http://dx.doi.org/10.3390/v11070607 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rossenkhan, Raabya Rolland, Morgane Labuschagne, Jan P.L. Ferreira, Roux-Cil Magaret, Craig A. Carpp, Lindsay N. Matsen IV, Frederick A. Huang, Yunda Rudnicki, Erika E. Zhang, Yuanyuan Ndabambi, Nonkululeko Logan, Murray Holzman, Ted Abrahams, Melissa-Rose Anthony, Colin Tovanabutra, Sodsai Warth, Christopher Botha, Gordon Matten, David Nitayaphan, Sorachai Kibuuka, Hannah Sawe, Fred K. Chopera, Denis Eller, Leigh Anne Travers, Simon Robb, Merlin L. Williamson, Carolyn Gilbert, Peter B. Edlefsen, Paul T. Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title | Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title_full | Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title_fullStr | Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title_full_unstemmed | Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title_short | Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment |
title_sort | combining viral genetics and statistical modeling to improve hiv-1 time-of-infection estimation towards enhanced vaccine efficacy assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669737/ https://www.ncbi.nlm.nih.gov/pubmed/31277299 http://dx.doi.org/10.3390/v11070607 |
work_keys_str_mv | AT rossenkhanraabya combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT rollandmorgane combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT labuschagnejanpl combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT ferreirarouxcil combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT magaretcraiga combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT carpplindsayn combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT matsenivfredericka combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT huangyunda combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT rudnickierikae combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT zhangyuanyuan combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT ndabambinonkululeko combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT loganmurray combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT holzmanted combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT abrahamsmelissarose combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT anthonycolin combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT tovanabutrasodsai combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT warthchristopher combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT bothagordon combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT mattendavid combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT nitayaphansorachai combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT kibuukahannah combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT sawefredk combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT choperadenis combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT ellerleighanne combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT traverssimon combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT robbmerlinl combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT williamsoncarolyn combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT gilbertpeterb combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment AT edlefsenpault combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment |