Cargando…

Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment

Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlat...

Descripción completa

Detalles Bibliográficos
Autores principales: Rossenkhan, Raabya, Rolland, Morgane, Labuschagne, Jan P.L., Ferreira, Roux-Cil, Magaret, Craig A., Carpp, Lindsay N., Matsen IV, Frederick A., Huang, Yunda, Rudnicki, Erika E., Zhang, Yuanyuan, Ndabambi, Nonkululeko, Logan, Murray, Holzman, Ted, Abrahams, Melissa-Rose, Anthony, Colin, Tovanabutra, Sodsai, Warth, Christopher, Botha, Gordon, Matten, David, Nitayaphan, Sorachai, Kibuuka, Hannah, Sawe, Fred K., Chopera, Denis, Eller, Leigh Anne, Travers, Simon, Robb, Merlin L., Williamson, Carolyn, Gilbert, Peter B., Edlefsen, Paul T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669737/
https://www.ncbi.nlm.nih.gov/pubmed/31277299
http://dx.doi.org/10.3390/v11070607
_version_ 1783440441290522624
author Rossenkhan, Raabya
Rolland, Morgane
Labuschagne, Jan P.L.
Ferreira, Roux-Cil
Magaret, Craig A.
Carpp, Lindsay N.
Matsen IV, Frederick A.
Huang, Yunda
Rudnicki, Erika E.
Zhang, Yuanyuan
Ndabambi, Nonkululeko
Logan, Murray
Holzman, Ted
Abrahams, Melissa-Rose
Anthony, Colin
Tovanabutra, Sodsai
Warth, Christopher
Botha, Gordon
Matten, David
Nitayaphan, Sorachai
Kibuuka, Hannah
Sawe, Fred K.
Chopera, Denis
Eller, Leigh Anne
Travers, Simon
Robb, Merlin L.
Williamson, Carolyn
Gilbert, Peter B.
Edlefsen, Paul T.
author_facet Rossenkhan, Raabya
Rolland, Morgane
Labuschagne, Jan P.L.
Ferreira, Roux-Cil
Magaret, Craig A.
Carpp, Lindsay N.
Matsen IV, Frederick A.
Huang, Yunda
Rudnicki, Erika E.
Zhang, Yuanyuan
Ndabambi, Nonkululeko
Logan, Murray
Holzman, Ted
Abrahams, Melissa-Rose
Anthony, Colin
Tovanabutra, Sodsai
Warth, Christopher
Botha, Gordon
Matten, David
Nitayaphan, Sorachai
Kibuuka, Hannah
Sawe, Fred K.
Chopera, Denis
Eller, Leigh Anne
Travers, Simon
Robb, Merlin L.
Williamson, Carolyn
Gilbert, Peter B.
Edlefsen, Paul T.
author_sort Rossenkhan, Raabya
collection PubMed
description Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5–10 days for sequences collected 1–2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection.
format Online
Article
Text
id pubmed-6669737
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-66697372019-08-08 Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment Rossenkhan, Raabya Rolland, Morgane Labuschagne, Jan P.L. Ferreira, Roux-Cil Magaret, Craig A. Carpp, Lindsay N. Matsen IV, Frederick A. Huang, Yunda Rudnicki, Erika E. Zhang, Yuanyuan Ndabambi, Nonkululeko Logan, Murray Holzman, Ted Abrahams, Melissa-Rose Anthony, Colin Tovanabutra, Sodsai Warth, Christopher Botha, Gordon Matten, David Nitayaphan, Sorachai Kibuuka, Hannah Sawe, Fred K. Chopera, Denis Eller, Leigh Anne Travers, Simon Robb, Merlin L. Williamson, Carolyn Gilbert, Peter B. Edlefsen, Paul T. Viruses Article Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5–10 days for sequences collected 1–2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection. MDPI 2019-07-03 /pmc/articles/PMC6669737/ /pubmed/31277299 http://dx.doi.org/10.3390/v11070607 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rossenkhan, Raabya
Rolland, Morgane
Labuschagne, Jan P.L.
Ferreira, Roux-Cil
Magaret, Craig A.
Carpp, Lindsay N.
Matsen IV, Frederick A.
Huang, Yunda
Rudnicki, Erika E.
Zhang, Yuanyuan
Ndabambi, Nonkululeko
Logan, Murray
Holzman, Ted
Abrahams, Melissa-Rose
Anthony, Colin
Tovanabutra, Sodsai
Warth, Christopher
Botha, Gordon
Matten, David
Nitayaphan, Sorachai
Kibuuka, Hannah
Sawe, Fred K.
Chopera, Denis
Eller, Leigh Anne
Travers, Simon
Robb, Merlin L.
Williamson, Carolyn
Gilbert, Peter B.
Edlefsen, Paul T.
Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title_full Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title_fullStr Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title_full_unstemmed Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title_short Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
title_sort combining viral genetics and statistical modeling to improve hiv-1 time-of-infection estimation towards enhanced vaccine efficacy assessment
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669737/
https://www.ncbi.nlm.nih.gov/pubmed/31277299
http://dx.doi.org/10.3390/v11070607
work_keys_str_mv AT rossenkhanraabya combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT rollandmorgane combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT labuschagnejanpl combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT ferreirarouxcil combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT magaretcraiga combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT carpplindsayn combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT matsenivfredericka combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT huangyunda combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT rudnickierikae combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT zhangyuanyuan combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT ndabambinonkululeko combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT loganmurray combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT holzmanted combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT abrahamsmelissarose combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT anthonycolin combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT tovanabutrasodsai combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT warthchristopher combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT bothagordon combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT mattendavid combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT nitayaphansorachai combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT kibuukahannah combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT sawefredk combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT choperadenis combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT ellerleighanne combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT traverssimon combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT robbmerlinl combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT williamsoncarolyn combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT gilbertpeterb combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment
AT edlefsenpault combiningviralgeneticsandstatisticalmodelingtoimprovehiv1timeofinfectionestimationtowardsenhancedvaccineefficacyassessment