Cargando…
A Full-Image Deep Segmenter for CT Images in Breast Cancer Radiotherapy Treatment
Radiation therapy is one of the key cancer treatment options. To avoid adverse effects in the healthy tissue, the treatment plan needs to be based on accurate anatomical models of the patient. In this work, an automatic segmentation solution for both female breasts and the heart is constructed using...
Autores principales: | Schreier, Jan, Attanasi, Francesca, Laaksonen, Hannu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669791/ https://www.ncbi.nlm.nih.gov/pubmed/31403032 http://dx.doi.org/10.3389/fonc.2019.00677 |
Ejemplares similares
-
Generalization vs. Specificity: In Which Cases Should a Clinic Train its Own Segmentation Models?
por: Schreier, Jan, et al.
Publicado: (2020) -
Application of FGD-BCEL loss function in segmenting temporal lobes on localized CT images for radiotherapy
por: Wen, Xiaobo, et al.
Publicado: (2023) -
Application of Deep Convolution Network to Automated Image Segmentation of Chest CT for Patients With Tumor
por: Xie, Hui, et al.
Publicado: (2021) -
Sequential and Iterative Auto-Segmentation of High-Risk Clinical Target Volume for Radiotherapy of Nasopharyngeal Carcinoma in Planning CT Images
por: Xue, Xudong, et al.
Publicado: (2020) -
Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging
por: Yue, Wenyi, et al.
Publicado: (2022)