Cargando…
Label-free quantitative proteomics in Candida yeast species: technical and biological replicates to assess data reproducibility
OBJECTIVE: Label-free quantitative proteomics has emerged as a powerful strategy to obtain high quality quantitative measures of the proteome with only a very small quantity of total protein extract. Because our research projects were requiring the application of bottom-up shotgun mass spectrometry...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669970/ https://www.ncbi.nlm.nih.gov/pubmed/31370875 http://dx.doi.org/10.1186/s13104-019-4505-8 |
Sumario: | OBJECTIVE: Label-free quantitative proteomics has emerged as a powerful strategy to obtain high quality quantitative measures of the proteome with only a very small quantity of total protein extract. Because our research projects were requiring the application of bottom-up shotgun mass spectrometry proteomics in the pathogenic yeasts Candida glabrata and Candida albicans, we performed preliminary experiments to (i) obtain a precise list of all the proteins for which measures of abundance could be obtained and (ii) assess the reproducibility of the results arising respectively from biological and technical replicates. DATA DESCRIPTION: Three time-courses were performed in each Candida species, and an alkaline pH stress was induced for two of them. Cells were collected 10 and 60 min after stress induction and proteins were extracted. Samples were analysed two times by mass spectrometry. Our final dataset thus comprises label-free quantitative proteomics results for 24 samples (two species, three time-courses, two time points and two runs of mass spectrometry). Statistical procedures were applied to identify proteins with differential abundances between stressed and unstressed situations. Considering that C. glabrata and C. albicans are human pathogens, which face important pH fluctuations during a human host infection, this dataset has a potential value to other researchers in the field. |
---|