Cargando…
Annotations, Ontologies, and Whole Slide Images – Development of an Annotated Ontology-Driven Whole Slide Image Library of Normal and Abnormal Human Tissue
OBJECTIVE: Digital pathology is today a widely used technology, and the digitalization of microscopic slides into whole slide images (WSIs) allows the use of machine learning algorithms as a tool in the diagnostic process. In recent years, “deep learning” algorithms for image analysis have been appl...
Autores principales: | Lindman, Karin, Rose, Jerómino F., Lindvall, Martin, Lundström, Claes, Treanor, Darren |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669998/ https://www.ncbi.nlm.nih.gov/pubmed/31523480 http://dx.doi.org/10.4103/jpi.jpi_81_18 |
Ejemplares similares
-
Overcoming an Annotation Hurdle: Digitizing Pen Annotations from Whole Slide Images
por: Schüffler, Peter J., et al.
Publicado: (2021) -
TissueWand, a Rapid Histopathology Annotation Tool
por: Lindvall, Martin, et al.
Publicado: (2020) -
Application of whole slide image markup and annotation for pathologist knowledge capture
por: Campbell, Walter S., et al.
Publicado: (2013) -
Proactive Construction of an Annotated Imaging Database for Artificial Intelligence Training
por: Stadler, Caroline Bivik, et al.
Publicado: (2020) -
Evaluating whole slide imaging: A working group opportunity
por: Treanor, Darren, et al.
Publicado: (2015)