Cargando…

Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma...

Descripción completa

Detalles Bibliográficos
Autores principales: Tavassoly, Iman, Hu, Yuan, Zhao, Shan, Mariottini, Chiara, Boran, Aislyn, Chen, Yibang, Li, Lisa, Tolentino, Rosa E., Jayaraman, Gomathi, Goldfarb, Joseph, Gallo, James, Iyengar, Ravi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670022/
https://www.ncbi.nlm.nih.gov/pubmed/31116490
http://dx.doi.org/10.1002/1878-0261.12521
_version_ 1783440490226515968
author Tavassoly, Iman
Hu, Yuan
Zhao, Shan
Mariottini, Chiara
Boran, Aislyn
Chen, Yibang
Li, Lisa
Tolentino, Rosa E.
Jayaraman, Gomathi
Goldfarb, Joseph
Gallo, James
Iyengar, Ravi
author_facet Tavassoly, Iman
Hu, Yuan
Zhao, Shan
Mariottini, Chiara
Boran, Aislyn
Chen, Yibang
Li, Lisa
Tolentino, Rosa E.
Jayaraman, Gomathi
Goldfarb, Joseph
Gallo, James
Iyengar, Ravi
author_sort Tavassoly, Iman
collection PubMed
description The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA‐approved drug that inhibits XDH, on human non‐small‐cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six‐gene signatures for allopurinol‐sensitive and allopurinol‐resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol‐resistant lines. Treatment of resistant cell lines with allopurinol and CEP‐33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP‐33779 was verified in vivo using tumor formation in NCR‐nude mice. We utilized the six‐gene signatures to predict five additional allopurinol‐sensitive NSCLC cell lines and four allopurinol‐resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient‐derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP‐33779 treatment. Patient‐derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.
format Online
Article
Text
id pubmed-6670022
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-66700222019-08-06 Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses Tavassoly, Iman Hu, Yuan Zhao, Shan Mariottini, Chiara Boran, Aislyn Chen, Yibang Li, Lisa Tolentino, Rosa E. Jayaraman, Gomathi Goldfarb, Joseph Gallo, James Iyengar, Ravi Mol Oncol Research Articles The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA‐approved drug that inhibits XDH, on human non‐small‐cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six‐gene signatures for allopurinol‐sensitive and allopurinol‐resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol‐resistant lines. Treatment of resistant cell lines with allopurinol and CEP‐33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP‐33779 was verified in vivo using tumor formation in NCR‐nude mice. We utilized the six‐gene signatures to predict five additional allopurinol‐sensitive NSCLC cell lines and four allopurinol‐resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient‐derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP‐33779 treatment. Patient‐derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine. John Wiley and Sons Inc. 2019-07-10 2019-08 /pmc/articles/PMC6670022/ /pubmed/31116490 http://dx.doi.org/10.1002/1878-0261.12521 Text en © 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Tavassoly, Iman
Hu, Yuan
Zhao, Shan
Mariottini, Chiara
Boran, Aislyn
Chen, Yibang
Li, Lisa
Tolentino, Rosa E.
Jayaraman, Gomathi
Goldfarb, Joseph
Gallo, James
Iyengar, Ravi
Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title_full Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title_fullStr Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title_full_unstemmed Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title_short Genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
title_sort genomic signatures defining responsiveness to allopurinol and combination therapy for lung cancer identified by systems therapeutics analyses
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670022/
https://www.ncbi.nlm.nih.gov/pubmed/31116490
http://dx.doi.org/10.1002/1878-0261.12521
work_keys_str_mv AT tavassolyiman genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT huyuan genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT zhaoshan genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT mariottinichiara genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT boranaislyn genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT chenyibang genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT lilisa genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT tolentinorosae genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT jayaramangomathi genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT goldfarbjoseph genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT gallojames genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses
AT iyengarravi genomicsignaturesdefiningresponsivenesstoallopurinolandcombinationtherapyforlungcanceridentifiedbysystemstherapeuticsanalyses