Cargando…
A biomimetic 2D transistor for audiomorphic computing
In this article, we introduce a biomimetic audiomorphic device that captures the neurobiological architecture and computational map inside the auditory cortex of barn owl known for its exceptional hunting ability in complete darkness using auditory cues. The device consists of multiple split-gates w...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673702/ https://www.ncbi.nlm.nih.gov/pubmed/31371722 http://dx.doi.org/10.1038/s41467-019-11381-9 |
Sumario: | In this article, we introduce a biomimetic audiomorphic device that captures the neurobiological architecture and computational map inside the auditory cortex of barn owl known for its exceptional hunting ability in complete darkness using auditory cues. The device consists of multiple split-gates with nanogaps on a semiconducting MoS(2) channel connected to the source/drain contacts for imitating the spatial map of coincidence detector neurons and tunable RC circuits for imitating the interaural time delay neurons following the Jeffress model of sound localization. Furthermore, we use global back-gating capability to demonstrate neuroplasticity to capture behavioral and/or adaptation related changes in the barn owl. Finally, the virtual source model for current transport is combined with finite element COMSOL multiphysics simulations to explain and project the performance of the biomimetic audiomorphic device. We find that the precision of the biomimetic device can supersede the barn owl by orders of magnitude. |
---|