Cargando…

Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model

[Image: see text] We present a density-matrix embedding theory (DMET) study of the one-dimensional Hubbard–Holstein model, which is paradigmatic for the interplay of electron–electron and electron–phonon interactions. Analyzing the single-particle excitation gap, we find a direct Peierls insulator t...

Descripción completa

Detalles Bibliográficos
Autores principales: Reinhard, Teresa E., Mordovina, Uliana, Hubig, Claudius, Kretchmer, Joshua S., Schollwöck, Ulrich, Appel, Heiko, Sentef, Michael A., Rubio, Angel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674265/
https://www.ncbi.nlm.nih.gov/pubmed/30807149
http://dx.doi.org/10.1021/acs.jctc.8b01116
_version_ 1783440600863866880
author Reinhard, Teresa E.
Mordovina, Uliana
Hubig, Claudius
Kretchmer, Joshua S.
Schollwöck, Ulrich
Appel, Heiko
Sentef, Michael A.
Rubio, Angel
author_facet Reinhard, Teresa E.
Mordovina, Uliana
Hubig, Claudius
Kretchmer, Joshua S.
Schollwöck, Ulrich
Appel, Heiko
Sentef, Michael A.
Rubio, Angel
author_sort Reinhard, Teresa E.
collection PubMed
description [Image: see text] We present a density-matrix embedding theory (DMET) study of the one-dimensional Hubbard–Holstein model, which is paradigmatic for the interplay of electron–electron and electron–phonon interactions. Analyzing the single-particle excitation gap, we find a direct Peierls insulator to Mott insulator phase transition in the adiabatic regime of slow phonons in contrast to a rather large intervening metallic phase in the anti-adiabatic regime of fast phonons. We benchmark the DMET results for both on-site energies and excitation gaps against density-matrix renormalization group (DMRG) results and find good agreement of the resulting phase boundaries. We also compare the full quantum treatment of phonons against the standard Born–Oppenheimer (BO) approximation. The BO approximation gives qualitatively similar results to DMET in the adiabatic regime but fails entirely in the anti-adiabatic regime, where BO predicts a sharp direct transition from Mott to Peierls insulator, whereas DMET correctly shows a large intervening metallic phase. This highlights the importance of quantum fluctuations in the phononic degrees of freedom for metallicity in the one-dimensional Hubbard–Holstein model.
format Online
Article
Text
id pubmed-6674265
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-66742652019-08-07 Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model Reinhard, Teresa E. Mordovina, Uliana Hubig, Claudius Kretchmer, Joshua S. Schollwöck, Ulrich Appel, Heiko Sentef, Michael A. Rubio, Angel J Chem Theory Comput [Image: see text] We present a density-matrix embedding theory (DMET) study of the one-dimensional Hubbard–Holstein model, which is paradigmatic for the interplay of electron–electron and electron–phonon interactions. Analyzing the single-particle excitation gap, we find a direct Peierls insulator to Mott insulator phase transition in the adiabatic regime of slow phonons in contrast to a rather large intervening metallic phase in the anti-adiabatic regime of fast phonons. We benchmark the DMET results for both on-site energies and excitation gaps against density-matrix renormalization group (DMRG) results and find good agreement of the resulting phase boundaries. We also compare the full quantum treatment of phonons against the standard Born–Oppenheimer (BO) approximation. The BO approximation gives qualitatively similar results to DMET in the adiabatic regime but fails entirely in the anti-adiabatic regime, where BO predicts a sharp direct transition from Mott to Peierls insulator, whereas DMET correctly shows a large intervening metallic phase. This highlights the importance of quantum fluctuations in the phononic degrees of freedom for metallicity in the one-dimensional Hubbard–Holstein model. American Chemical Society 2019-02-26 2019-04-09 /pmc/articles/PMC6674265/ /pubmed/30807149 http://dx.doi.org/10.1021/acs.jctc.8b01116 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Reinhard, Teresa E.
Mordovina, Uliana
Hubig, Claudius
Kretchmer, Joshua S.
Schollwöck, Ulrich
Appel, Heiko
Sentef, Michael A.
Rubio, Angel
Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title_full Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title_fullStr Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title_full_unstemmed Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title_short Density-Matrix Embedding Theory Study of the One-Dimensional Hubbard–Holstein Model
title_sort density-matrix embedding theory study of the one-dimensional hubbard–holstein model
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6674265/
https://www.ncbi.nlm.nih.gov/pubmed/30807149
http://dx.doi.org/10.1021/acs.jctc.8b01116
work_keys_str_mv AT reinhardteresae densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT mordovinauliana densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT hubigclaudius densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT kretchmerjoshuas densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT schollwockulrich densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT appelheiko densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT sentefmichaela densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel
AT rubioangel densitymatrixembeddingtheorystudyoftheonedimensionalhubbardholsteinmodel