Cargando…
Probabilistic associative learning suffices for learning the temporal structure of multiple sequences
From memorizing a musical tune to navigating a well known route, many of our underlying behaviors have a strong temporal component. While the mechanisms behind the sequential nature of the underlying brain activity are likely multifarious and multi-scale, in this work we attempt to characterize to w...
Autores principales: | Martinez, Ramon H., Lansner, Anders, Herman, Pawel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675053/ https://www.ncbi.nlm.nih.gov/pubmed/31369571 http://dx.doi.org/10.1371/journal.pone.0220161 |
Ejemplares similares
-
Probabilistic computation underlying sequence learning in a spiking attractor memory network
por: Tully, Philip, et al.
Publicado: (2013) -
Spike-Based Bayesian-Hebbian Learning of Temporal Sequences
por: Tully, Philip J., et al.
Publicado: (2016) -
Integrated Sequence-Structure Motifs Suffice to Identify microRNA Precursors
por: Liu, Xiuqin, et al.
Publicado: (2012) -
Synaptic and nonsynaptic plasticity approximating probabilistic inference
por: Tully, Philip J., et al.
Publicado: (2014) -
Phylogenetic correlations can suffice to infer protein partners from sequences
por: Marmier, Guillaume, et al.
Publicado: (2019)