Cargando…

Highly sensitive biomolecular interaction detection method using optical bound/free separation with grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS)

Grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS) with optical bound/free (B/F) separation technique was developed by employing a highly directional fluorescence with polarization of surface plasmon-coupled emission (SPCE) to realize highly sensitive immunoassay rega...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaya, Takatoshi, Nagatoishi, Satoru, Nagae, Kosuke, Nakamura, Yukito, Tsumoto, Kohei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675060/
https://www.ncbi.nlm.nih.gov/pubmed/31369601
http://dx.doi.org/10.1371/journal.pone.0220578
Descripción
Sumario:Grating-coupled surface plasmon field-enhanced fluorescence spectroscopy (GC-SPFS) with optical bound/free (B/F) separation technique was developed by employing a highly directional fluorescence with polarization of surface plasmon-coupled emission (SPCE) to realize highly sensitive immunoassay regardless of the ligand affinity. A highly sensitive immunoassay system with GC-SPFS was constructed using a plastic sensor chip reproducibly fabricated in-house by nanoimprinting and applied to the quantitative detection of an anti-lysozyme single-domain antibody (sdAb), to compare conventional washing B/F separation with optical B/F separation. Differences in the affinity of the anti-lysozyme sdAb, induced by artificial mutation of only one amino acid residue in the variable domain were attributed to higher sensitivity than that of the conventional Biacore surface plasmon resonance (SPR) system. The detection limit (LOD; means of six replicates of the zero standard plus three standard deviations) of the GC-SPFS immunoassay with optical B/F separation, was estimated to be 1.2 ng/ml with the low-affinity ligand (mutant sdAb Y52A: K(D) level was of the order of 10(−7) ~ 10(−6) M) and was clearly improved as compared to that (LOD: 9.4 ng/ml) obtained with the conventional washing B/F separation. These results indicate that GC-SPFS with the optical B/F separation technique offers opportunities to re-evaluate low-affinity biomaterials that are neither fully utilized nor widespread, and could facilitate the creation of novel and innovative methods in drug and diagnostic development.