Cargando…
Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives
The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675512/ https://www.ncbi.nlm.nih.gov/pubmed/31388447 http://dx.doi.org/10.1002/evl3.128 |
_version_ | 1783440633063538688 |
---|---|
author | Cytrynbaum, Eli G. Small, Clayton M. Kwon, Ronald Y. Hung, Boaz Kent, Danny Yan, Yi‐Lin Knope, Matthew L. Bremiller, Ruth A. Desvignes, Thomas Kimmel, Charles B. |
author_facet | Cytrynbaum, Eli G. Small, Clayton M. Kwon, Ronald Y. Hung, Boaz Kent, Danny Yan, Yi‐Lin Knope, Matthew L. Bremiller, Ruth A. Desvignes, Thomas Kimmel, Charles B. |
author_sort | Cytrynbaum, Eli G. |
collection | PubMed |
description | The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous ossification as a driver of morphological diversity. We discover the occurrence of specific, sometimes large, regions of nonmineralized osteoid within bones that also contain mineralized tissue. We show through a variety of histological, molecular, and tomographic tests that this “extended” osteoid material is most likely nonmineralized bone matrix. This tissue type is a significant determinant of gill cover bone shape in the teleostean suborder Cottoidei. We demonstrate repeated evolution of extended osteoid in Cottoidei through ancestral state reconstruction and test for an association between extended osteoid variation and habitat differences among species. Through measurement of extended osteoid at various stages of gill cover development in species across the phylogeny, we gain insight into possible evolutionary developmental origins of the trait. We conclude that this fine‐tuned developmental regulation of bone matrix mineralization reflects heterochrony at multiple biological levels and is a novel mechanism for the evolution of diversity in skeletal morphology. This research lays the groundwork for a new model in which to study bone mineralization and evolutionary developmental processes, particularly as they may relate to adaptation during a prominent evolutionary radiation of fishes. |
format | Online Article Text |
id | pubmed-6675512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-66755122019-08-06 Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives Cytrynbaum, Eli G. Small, Clayton M. Kwon, Ronald Y. Hung, Boaz Kent, Danny Yan, Yi‐Lin Knope, Matthew L. Bremiller, Ruth A. Desvignes, Thomas Kimmel, Charles B. Evol Lett Letters The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous ossification as a driver of morphological diversity. We discover the occurrence of specific, sometimes large, regions of nonmineralized osteoid within bones that also contain mineralized tissue. We show through a variety of histological, molecular, and tomographic tests that this “extended” osteoid material is most likely nonmineralized bone matrix. This tissue type is a significant determinant of gill cover bone shape in the teleostean suborder Cottoidei. We demonstrate repeated evolution of extended osteoid in Cottoidei through ancestral state reconstruction and test for an association between extended osteoid variation and habitat differences among species. Through measurement of extended osteoid at various stages of gill cover development in species across the phylogeny, we gain insight into possible evolutionary developmental origins of the trait. We conclude that this fine‐tuned developmental regulation of bone matrix mineralization reflects heterochrony at multiple biological levels and is a novel mechanism for the evolution of diversity in skeletal morphology. This research lays the groundwork for a new model in which to study bone mineralization and evolutionary developmental processes, particularly as they may relate to adaptation during a prominent evolutionary radiation of fishes. John Wiley and Sons Inc. 2019-07-16 /pmc/articles/PMC6675512/ /pubmed/31388447 http://dx.doi.org/10.1002/evl3.128 Text en © 2019 The Author(s). Evolution Letters published by Wiley Periodicals, Inc. on behalf of Society for the Study of Evolution (SSE) and European Society for Evolutionary Biology (ESEB). This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Letters Cytrynbaum, Eli G. Small, Clayton M. Kwon, Ronald Y. Hung, Boaz Kent, Danny Yan, Yi‐Lin Knope, Matthew L. Bremiller, Ruth A. Desvignes, Thomas Kimmel, Charles B. Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title | Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title_full | Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title_fullStr | Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title_full_unstemmed | Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title_short | Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
title_sort | developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives |
topic | Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675512/ https://www.ncbi.nlm.nih.gov/pubmed/31388447 http://dx.doi.org/10.1002/evl3.128 |
work_keys_str_mv | AT cytrynbaumelig developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT smallclaytonm developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT kwonronaldy developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT hungboaz developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT kentdanny developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT yanyilin developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT knopematthewl developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT bremillerrutha developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT desvignesthomas developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives AT kimmelcharlesb developmentaltuningofmineralizationdrivesmorphologicaldiversityofgillcoverbonesinsculpinsandtheirrelatives |