Cargando…

Asymmetric Baeyer–Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones

Regioselectivity is a crucial issue in Baeyer–Villiger (BV) oxidation. To date, few reports have addressed asymmetric BV oxidation of 3-substituted cycloketones due to the high difficulty of controlling regio- and stereoselectivity. Herein, we report the asymmetric BV oxidation of 3-substituted and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Wangbin, Cao, Weidi, Hu, Linfeng, Su, Zhishan, Liu, Xiaohua, Feng, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676330/
https://www.ncbi.nlm.nih.gov/pubmed/31588267
http://dx.doi.org/10.1039/c9sc01563a
Descripción
Sumario:Regioselectivity is a crucial issue in Baeyer–Villiger (BV) oxidation. To date, few reports have addressed asymmetric BV oxidation of 3-substituted cycloketones due to the high difficulty of controlling regio- and stereoselectivity. Herein, we report the asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones with chiral N,N′-dioxide/Sc(iii) catalysts performed in three ways: classical kinetic resolution, parallel kinetic resolution and desymmetrization. The methodology was applied in the total and formal synthesis of bioactive compounds and natural products. Control experiments and calculations demonstrated that flexible and adjustable catalysts played a significant role in the chiral recognition of substrates.