Cargando…

An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes

BACKGROUND: To identify potential participants for clinical trials, electronic health records (EHRs) are searched at potential sites. As an alternative, we investigated using medical devices used for real-time diagnostic decisions for trial enrollment. METHODS: To project cohorts for a trial in acut...

Descripción completa

Detalles Bibliográficos
Autores principales: Selker, Harry P., Kwong, Manlik, Ruthazer, Robin, Gorman, Sheeona, Green, Giuliana, Patchen, Elizabeth, Udelson, James E., Smithline, Howard A., Baumann, Michael R., Harris, Paul A., Shah, Rashmee U., Nelson, Sarah J., Cohen, Theodora, Jones, Elizabeth B., Barnewolt, Brien A., Williams, Andrew E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676436/
https://www.ncbi.nlm.nih.gov/pubmed/31404280
http://dx.doi.org/10.1017/cts.2019.365
_version_ 1783440763220131840
author Selker, Harry P.
Kwong, Manlik
Ruthazer, Robin
Gorman, Sheeona
Green, Giuliana
Patchen, Elizabeth
Udelson, James E.
Smithline, Howard A.
Baumann, Michael R.
Harris, Paul A.
Shah, Rashmee U.
Nelson, Sarah J.
Cohen, Theodora
Jones, Elizabeth B.
Barnewolt, Brien A.
Williams, Andrew E.
author_facet Selker, Harry P.
Kwong, Manlik
Ruthazer, Robin
Gorman, Sheeona
Green, Giuliana
Patchen, Elizabeth
Udelson, James E.
Smithline, Howard A.
Baumann, Michael R.
Harris, Paul A.
Shah, Rashmee U.
Nelson, Sarah J.
Cohen, Theodora
Jones, Elizabeth B.
Barnewolt, Brien A.
Williams, Andrew E.
author_sort Selker, Harry P.
collection PubMed
description BACKGROUND: To identify potential participants for clinical trials, electronic health records (EHRs) are searched at potential sites. As an alternative, we investigated using medical devices used for real-time diagnostic decisions for trial enrollment. METHODS: To project cohorts for a trial in acute coronary syndromes (ACS), we used electrocardiograph-based algorithms that identify ACS or ST elevation myocardial infarction (STEMI) that prompt clinicians to offer patients trial enrollment. We searched six hospitals’ electrocardiograph systems for electrocardiograms (ECGs) meeting the planned trial’s enrollment criterion: ECGs with STEMI or > 75% probability of ACS by the acute cardiac ischemia time-insensitive predictive instrument (ACI-TIPI). We revised the ACI-TIPI regression to require only data directly from the electrocardiograph, the e-ACI-TIPI using the same data used for the original ACI-TIPI (development set n = 3,453; test set n = 2,315). We also tested both on data from emergency department electrocardiographs from across the US (n = 8,556). We then used ACI-TIPI and e-ACI-TIPI to identify potential cohorts for the ACS trial and compared performance to cohorts from EHR data at the hospitals. RESULTS: Receiver-operating characteristic (ROC) curve areas on the test set were excellent, 0.89 for ACI-TIPI and 0.84 for the e-ACI-TIPI, as was calibration. On the national electrocardiographic database, ROC areas were 0.78 and 0.69, respectively, and with very good calibration. When tested for detection of patients with > 75% ACS probability, both electrocardiograph-based methods identified eligible patients well, and better than did EHRs. CONCLUSION: Using data from medical devices such as electrocardiographs may provide accurate projections of available cohorts for clinical trials.
format Online
Article
Text
id pubmed-6676436
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-66764362019-08-09 An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes Selker, Harry P. Kwong, Manlik Ruthazer, Robin Gorman, Sheeona Green, Giuliana Patchen, Elizabeth Udelson, James E. Smithline, Howard A. Baumann, Michael R. Harris, Paul A. Shah, Rashmee U. Nelson, Sarah J. Cohen, Theodora Jones, Elizabeth B. Barnewolt, Brien A. Williams, Andrew E. J Clin Transl Sci Research Article BACKGROUND: To identify potential participants for clinical trials, electronic health records (EHRs) are searched at potential sites. As an alternative, we investigated using medical devices used for real-time diagnostic decisions for trial enrollment. METHODS: To project cohorts for a trial in acute coronary syndromes (ACS), we used electrocardiograph-based algorithms that identify ACS or ST elevation myocardial infarction (STEMI) that prompt clinicians to offer patients trial enrollment. We searched six hospitals’ electrocardiograph systems for electrocardiograms (ECGs) meeting the planned trial’s enrollment criterion: ECGs with STEMI or > 75% probability of ACS by the acute cardiac ischemia time-insensitive predictive instrument (ACI-TIPI). We revised the ACI-TIPI regression to require only data directly from the electrocardiograph, the e-ACI-TIPI using the same data used for the original ACI-TIPI (development set n = 3,453; test set n = 2,315). We also tested both on data from emergency department electrocardiographs from across the US (n = 8,556). We then used ACI-TIPI and e-ACI-TIPI to identify potential cohorts for the ACS trial and compared performance to cohorts from EHR data at the hospitals. RESULTS: Receiver-operating characteristic (ROC) curve areas on the test set were excellent, 0.89 for ACI-TIPI and 0.84 for the e-ACI-TIPI, as was calibration. On the national electrocardiographic database, ROC areas were 0.78 and 0.69, respectively, and with very good calibration. When tested for detection of patients with > 75% ACS probability, both electrocardiograph-based methods identified eligible patients well, and better than did EHRs. CONCLUSION: Using data from medical devices such as electrocardiographs may provide accurate projections of available cohorts for clinical trials. Cambridge University Press 2019-05-14 /pmc/articles/PMC6676436/ /pubmed/31404280 http://dx.doi.org/10.1017/cts.2019.365 Text en © The Association for Clinical and Translational Science 2019 https://creativecommons.org/licenses/by-ncnd/4.0/ This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-ncnd/4.0/), which permits noncommercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
spellingShingle Research Article
Selker, Harry P.
Kwong, Manlik
Ruthazer, Robin
Gorman, Sheeona
Green, Giuliana
Patchen, Elizabeth
Udelson, James E.
Smithline, Howard A.
Baumann, Michael R.
Harris, Paul A.
Shah, Rashmee U.
Nelson, Sarah J.
Cohen, Theodora
Jones, Elizabeth B.
Barnewolt, Brien A.
Williams, Andrew E.
An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title_full An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title_fullStr An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title_full_unstemmed An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title_short An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
title_sort example of medical device-based projection of clinical trial enrollment: use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676436/
https://www.ncbi.nlm.nih.gov/pubmed/31404280
http://dx.doi.org/10.1017/cts.2019.365
work_keys_str_mv AT selkerharryp anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT kwongmanlik anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT ruthazerrobin anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT gormansheeona anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT greengiuliana anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT patchenelizabeth anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT udelsonjamese anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT smithlinehowarda anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT baumannmichaelr anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT harrispaula anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT shahrashmeeu anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT nelsonsarahj anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT cohentheodora anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT joneselizabethb anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT barnewoltbriena anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT williamsandrewe anexampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT selkerharryp exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT kwongmanlik exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT ruthazerrobin exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT gormansheeona exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT greengiuliana exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT patchenelizabeth exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT udelsonjamese exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT smithlinehowarda exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT baumannmichaelr exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT harrispaula exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT shahrashmeeu exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT nelsonsarahj exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT cohentheodora exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT joneselizabethb exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT barnewoltbriena exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes
AT williamsandrewe exampleofmedicaldevicebasedprojectionofclinicaltrialenrollmentuseofelectrocardiographicdatatoidentifycandidatesforatrialinacutecoronarysyndromes