Cargando…
Massive metagenomic data analysis using abundance-based machine learning
BACKGROUND: Metagenomics is the application of modern genomic techniques to investigate the members of a microbial community directly in their natural environments and is widely used in many studies to survey the communities of microbial organisms that live in diverse ecosystems. In order to underst...
Autores principales: | Harris, Zachary N., Dhungel, Eliza, Mosior, Matthew, Ahn, Tae-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676585/ https://www.ncbi.nlm.nih.gov/pubmed/31370905 http://dx.doi.org/10.1186/s13062-019-0242-0 |
Ejemplares similares
-
MegaR: an interactive R package for rapid sample classification and phenotype prediction using metagenome profiles and machine learning
por: Dhungel, Eliza, et al.
Publicado: (2021) -
Comparison of normalization methods for the analysis of metagenomic gene abundance data
por: Pereira, Mariana Buongermino, et al.
Publicado: (2018) -
KAUST Metagenomic Analysis Platform (KMAP), enabling access to massive analytics of re-annotated metagenomic data
por: Alam, Intikhab, et al.
Publicado: (2021) -
Abundance estimation and differential testing on strain level in metagenomics data
por: Fischer, Martina, et al.
Publicado: (2017) -
MegaD: Deep Learning for Rapid and Accurate Disease Status Prediction of Metagenomic Samples
por: Mreyoud, Yassin, et al.
Publicado: (2022)