Cargando…
A Smart and Multifaceted Mobile Health System for Delivering Evidence-Based Secondary Prevention of Stroke in Rural China: Design, Development, and Feasibility Study
BACKGROUND: Mobile health (mHealth) technologies hold great promise in improving the delivery of high-quality health care services. Yet, there has been little research so far applying mHealth technologies in the context of delivering stroke care in resource-limited rural regions. OBJECTIVE: This stu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676792/ https://www.ncbi.nlm.nih.gov/pubmed/31325288 http://dx.doi.org/10.2196/13503 |
Sumario: | BACKGROUND: Mobile health (mHealth) technologies hold great promise in improving the delivery of high-quality health care services. Yet, there has been little research so far applying mHealth technologies in the context of delivering stroke care in resource-limited rural regions. OBJECTIVE: This study aimed to introduce the design and development of an mHealth system targeting primary health care providers and to ascertain its feasibility in supporting the delivery of a System-Integrated techNology-Enabled Model of cAre (SINEMA) service for strengthening secondary prevention of stroke in rural China. METHODS: The SINEMA mHealth system was designed by a multidisciplinary team comprising public health researchers, neurologists, and information and communication technology experts. The iterative co-design and development of the mHealth system involved the following 5 steps: (1) assessing the needs of relevant end users through in-depth interviews of stakeholders, (2) designing the functional modules and evidence-based care content, (3) designing and building the system and user interface, (4) improving and enhancing the system through a 3-month pilot test in 4 villages, and (5) finalizing the system and deploying it in field trial, and finally, evaluating its feasibility through a survey of the dominant user group. RESULTS: From the in-depth interviews of 49 relevant stakeholders, we found that village doctors had limited capacity in caring for village-dwelling stroke patients in rural areas. Primary health care workers demonstrated real needs in receiving appropriate training and support from the mHealth system as well as great interests in using the mHealth technologies and tools. Using these findings, we designed a multifaceted mHealth system with 7 functional modules by following the iterative user-centered design and software development approach. The mHealth system, aimed at 3 different types of users (village doctors, town physicians, and county managers), was developed and utilized in a cluster-randomized controlled trial by 25 village doctors in a resource-limited county in rural China to manage 637 stroke patients between July 2017 and July 2018. In the end, a survey on the usability and functions of the mHealth system among village doctors (the dominant group of users, response rate=96%, 24/25) revealed that most of them were satisfied with the essential functions provided (71%) and were keen to continue using it (92%) after the study. CONCLUSIONS: The mHealth system was feasible for assisting primary health care providers in rural China in delivering the SINEMA service on the secondary prevention of stroke. Further research and initiatives in scaling up the SINEMA approach and this mHealth system to other resource-limited regions in China and beyond will likely enhance the quality and accessibility of essential secondary prevention among stroke patients. CLINICALTRIAL: ClinicalTrials.gov NCT03185858; https://clinicaltrials.gov/ct2/show/NCT03185858 INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.1016/j.ahj.2018.08.015 |
---|