Cargando…

NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)

The functions of cuticular hydrocarbons (CHCs) are varied in insects, but one example is to reduce water loss. Previous work has suggested that biosynthesis of CHCs is strongly related to the CYP4G sub-family. Targeting these genes in the brown planthopper, Nilaparvata lugens Stål, might be a new ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shengyin, Li, Baoling, Zhang, Dayu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677172/
https://www.ncbi.nlm.nih.gov/pubmed/31404332
http://dx.doi.org/10.3389/fphys.2019.00913
_version_ 1783440895041863680
author Wang, Shengyin
Li, Baoling
Zhang, Dayu
author_facet Wang, Shengyin
Li, Baoling
Zhang, Dayu
author_sort Wang, Shengyin
collection PubMed
description The functions of cuticular hydrocarbons (CHCs) are varied in insects, but one example is to reduce water loss. Previous work has suggested that biosynthesis of CHCs is strongly related to the CYP4G sub-family. Targeting these genes in the brown planthopper, Nilaparvata lugens Stål, might be a new application for integrated pest management. Therefore, we explored the functions of CYP4G76 (GenBank: KM217045.1) and CYP4G115 (GenBank: KM217046.1) genes in this study. The desiccation treatment (RH < 5%) for the duration of 1–3 days significantly increased the transcription level of CYP4G76 and CYP4G115. RNAi through the injection of CYP4G76 and CYP4G115 dsRNA could significantly decrease their expression, respectively, and further reduced the biosynthesis of CHCs, i.e., saturated and straight-chain alkanes. When CYP4G76 and CYP4G115 were suppressed, the susceptibility of N. lugens nymphs to desiccation increased, due to the deficiency of the CHCs in the insect’s cuticle. When the expression of CYP4G76 and CYP4G115 was decreased, this resulted in an increased rate of penetration of the four insecticides: pymetrozine, imidacloprid, thiamethoxam and buprofezin. Therefore, CYP4G76 and CYP4G115 appear to regulate the biosynthesis of CHCs in N. lugens nymphs, which play a major role in protecting insects from water loss and the penetration of insecticides. CYP4G76 and CYP4G115 might be used as a novel target in integrated pest management to N. lugens.
format Online
Article
Text
id pubmed-6677172
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-66771722019-08-09 NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae) Wang, Shengyin Li, Baoling Zhang, Dayu Front Physiol Physiology The functions of cuticular hydrocarbons (CHCs) are varied in insects, but one example is to reduce water loss. Previous work has suggested that biosynthesis of CHCs is strongly related to the CYP4G sub-family. Targeting these genes in the brown planthopper, Nilaparvata lugens Stål, might be a new application for integrated pest management. Therefore, we explored the functions of CYP4G76 (GenBank: KM217045.1) and CYP4G115 (GenBank: KM217046.1) genes in this study. The desiccation treatment (RH < 5%) for the duration of 1–3 days significantly increased the transcription level of CYP4G76 and CYP4G115. RNAi through the injection of CYP4G76 and CYP4G115 dsRNA could significantly decrease their expression, respectively, and further reduced the biosynthesis of CHCs, i.e., saturated and straight-chain alkanes. When CYP4G76 and CYP4G115 were suppressed, the susceptibility of N. lugens nymphs to desiccation increased, due to the deficiency of the CHCs in the insect’s cuticle. When the expression of CYP4G76 and CYP4G115 was decreased, this resulted in an increased rate of penetration of the four insecticides: pymetrozine, imidacloprid, thiamethoxam and buprofezin. Therefore, CYP4G76 and CYP4G115 appear to regulate the biosynthesis of CHCs in N. lugens nymphs, which play a major role in protecting insects from water loss and the penetration of insecticides. CYP4G76 and CYP4G115 might be used as a novel target in integrated pest management to N. lugens. Frontiers Media S.A. 2019-07-26 /pmc/articles/PMC6677172/ /pubmed/31404332 http://dx.doi.org/10.3389/fphys.2019.00913 Text en Copyright © 2019 Wang, Li and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Wang, Shengyin
Li, Baoling
Zhang, Dayu
NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title_full NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title_fullStr NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title_full_unstemmed NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title_short NlCYP4G76 and NlCYP4G115 Modulate Susceptibility to Desiccation and Insecticide Penetration Through Affecting Cuticular Hydrocarbon Biosynthesis in Nilaparvata lugens (Hemiptera: Delphacidae)
title_sort nlcyp4g76 and nlcyp4g115 modulate susceptibility to desiccation and insecticide penetration through affecting cuticular hydrocarbon biosynthesis in nilaparvata lugens (hemiptera: delphacidae)
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677172/
https://www.ncbi.nlm.nih.gov/pubmed/31404332
http://dx.doi.org/10.3389/fphys.2019.00913
work_keys_str_mv AT wangshengyin nlcyp4g76andnlcyp4g115modulatesusceptibilitytodesiccationandinsecticidepenetrationthroughaffectingcuticularhydrocarbonbiosynthesisinnilaparvatalugenshemipteradelphacidae
AT libaoling nlcyp4g76andnlcyp4g115modulatesusceptibilitytodesiccationandinsecticidepenetrationthroughaffectingcuticularhydrocarbonbiosynthesisinnilaparvatalugenshemipteradelphacidae
AT zhangdayu nlcyp4g76andnlcyp4g115modulatesusceptibilitytodesiccationandinsecticidepenetrationthroughaffectingcuticularhydrocarbonbiosynthesisinnilaparvatalugenshemipteradelphacidae