Cargando…

Azaperone and xylazine: A pharmacological combination to facilitate captive deer management for red brocket deer (Mazama americana)

The care and management of deer in captivity is challenging, especially in the case of red brocket deer (Mazama americana), whose routine management using physical restraint is difficult. Our study evaluated the effects of azaperone and xylazine combination for immobilizing red brocket deer and allo...

Descripción completa

Detalles Bibliográficos
Autores principales: Carregaro, Adriano B., Ferrari, Bárbara G., da Silva, André N. E., Xavier, Nathalia V., Duarte, José M. B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677384/
https://www.ncbi.nlm.nih.gov/pubmed/31374096
http://dx.doi.org/10.1371/journal.pone.0220288
Descripción
Sumario:The care and management of deer in captivity is challenging, especially in the case of red brocket deer (Mazama americana), whose routine management using physical restraint is difficult. Our study evaluated the effects of azaperone and xylazine combination for immobilizing red brocket deer and allow for the standard capture and handling protocols (e.g., biological material, horn cutting, and trimming) to be conducted safely. Six adult, captive, red brocket deer received an intramuscular injection of either 1 mg/kg azaperone and 0.5 mg/kg xylazine (AX0.5) or 1 mg/kg azaperone and 1 mg/kg xylazine (AX1.0). Sedation latency, sternal recumbency, safe handling, and quality of the sedation were evaluated to provide an overview of how the immobilizing drugs affected managing the species in captivity. Additionally, heart rate, respiratory rate, mean arterial pressure, rectal temperature, pH, PaO(2), PaCO(2), SaO(2), HCO(3)(-), BE, Na(+), K(+) and serum lactate were also measured. The latency period of the animals in the AX0.5 group was greater than that of the animals in the AX1.0 group (7 ± 6.6 min vs. 5 ± 2.0 min), as was the time for them to assume sternal recumbency (12 ± 9.7 min vs. 6 ± 3.1 min). However, the time after the initial dose at which the animals could safely be handled (14 ± 4.5 min vs. 12 ± 5.2 min), and the time until the end of the safe handling period (75 ± 12.3 min vs. 85 ± 6.8 min) were similar for both groups. Animals in both groups showed physiological stability during all evaluations, but hypoxemia was observed in one animal in each group. We conclude that both drug combinations are safe and effective at sedating red brocket deer in captivity and suggest that the procedure be performed with oxygen supplementation to reduce the potential for hypoxia.