Cargando…
Data-Driven Method for Efficient Characterization of Rare Event Probabilities in Biochemical Systems
As mathematical models and computational tools become more sophisticated and powerful to accurately depict system dynamics, numerical methods that were previously considered computationally impractical started being utilized for large-scale simulations. Methods that characterize a rare event in bioc...
Autor principal: | Roh, Min K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677716/ https://www.ncbi.nlm.nih.gov/pubmed/30225593 http://dx.doi.org/10.1007/s11538-018-0509-0 |
Ejemplares similares
-
The Linear Noise Approximation for Spatially Dependent Biochemical Networks
por: Lötstedt, Per
Publicado: (2018) -
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems
por: Beentjes, Casper H. L., et al.
Publicado: (2018) -
Stochastic Simulation of Pattern Formation in Growing Tissue: A Multilevel Approach
por: Engblom, Stefan
Publicado: (2018) -
Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches
por: Smith, Stephen, et al.
Publicado: (2018) -
Multiscale Stochastic Reaction–Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations
por: Kang, Hye-Won, et al.
Publicado: (2019)