Cargando…
Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles
The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal pl...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677811/ https://www.ncbi.nlm.nih.gov/pubmed/31375722 http://dx.doi.org/10.1038/s41598-019-47677-5 |
_version_ | 1783440961829863424 |
---|---|
author | Aniculaesei, Constantin Pathak, Vishwa Bandhu Kim, Hyung Taek Oh, Kyung Hwan Yoo, Byung Ju Brunetti, Enrico Jang, Yong Ha Hojbota, Calin Ioan Shin, Jung Hun Jeon, Jong Ho Cho, Seongha Cho, Myung Hoon Sung, Jae Hee Lee, Seong Ku Hegelich, Björn Manuel Nam, Chang Hee |
author_facet | Aniculaesei, Constantin Pathak, Vishwa Bandhu Kim, Hyung Taek Oh, Kyung Hwan Yoo, Byung Ju Brunetti, Enrico Jang, Yong Ha Hojbota, Calin Ioan Shin, Jung Hun Jeon, Jong Ho Cho, Seongha Cho, Myung Hoon Sung, Jae Hee Lee, Seong Ku Hegelich, Björn Manuel Nam, Chang Hee |
author_sort | Aniculaesei, Constantin |
collection | PubMed |
description | The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 ± 1 MeV to 262 ± 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 ± 0.45 mrad to 12.6 ± 1.2 mrad along the horizontal axis and from 35 ± 0.3 mrad to 8.3 ± 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons. |
format | Online Article Text |
id | pubmed-6677811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-66778112019-08-08 Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles Aniculaesei, Constantin Pathak, Vishwa Bandhu Kim, Hyung Taek Oh, Kyung Hwan Yoo, Byung Ju Brunetti, Enrico Jang, Yong Ha Hojbota, Calin Ioan Shin, Jung Hun Jeon, Jong Ho Cho, Seongha Cho, Myung Hoon Sung, Jae Hee Lee, Seong Ku Hegelich, Björn Manuel Nam, Chang Hee Sci Rep Article The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 ± 1 MeV to 262 ± 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 ± 0.45 mrad to 12.6 ± 1.2 mrad along the horizontal axis and from 35 ± 0.3 mrad to 8.3 ± 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons. Nature Publishing Group UK 2019-08-02 /pmc/articles/PMC6677811/ /pubmed/31375722 http://dx.doi.org/10.1038/s41598-019-47677-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Aniculaesei, Constantin Pathak, Vishwa Bandhu Kim, Hyung Taek Oh, Kyung Hwan Yoo, Byung Ju Brunetti, Enrico Jang, Yong Ha Hojbota, Calin Ioan Shin, Jung Hun Jeon, Jong Ho Cho, Seongha Cho, Myung Hoon Sung, Jae Hee Lee, Seong Ku Hegelich, Björn Manuel Nam, Chang Hee Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title_full | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title_fullStr | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title_full_unstemmed | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title_short | Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
title_sort | electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677811/ https://www.ncbi.nlm.nih.gov/pubmed/31375722 http://dx.doi.org/10.1038/s41598-019-47677-5 |
work_keys_str_mv | AT aniculaeseiconstantin electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT pathakvishwabandhu electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT kimhyungtaek electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT ohkyunghwan electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT yoobyungju electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT brunettienrico electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT jangyongha electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT hojbotacalinioan electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT shinjunghun electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT jeonjongho electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT choseongha electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT chomyunghoon electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT sungjaehee electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT leeseongku electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT hegelichbjornmanuel electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles AT namchanghee electronenergyincreaseinalaserwakefieldacceleratorusinguprampplasmadensityprofiles |