Cargando…
Hydrodynamic object identification with artificial neural models
The lateral-line system that has evolved in many aquatic animals enables them to navigate murky fluid environments, locate and discriminate obstacles. Here, we present a data-driven model that uses artificial neural networks to process flow data originating from a stationary sensor array located awa...
Autores principales: | Lakkam, Sreetej, Balamurali, B. T., Bouffanais, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6677828/ https://www.ncbi.nlm.nih.gov/pubmed/31375742 http://dx.doi.org/10.1038/s41598-019-47747-8 |
Ejemplares similares
-
Modeling of Flowering Time in Vigna radiata with Artificial Image Objects, Convolutional Neural Network and Random Forest
por: Bavykina, Maria, et al.
Publicado: (2022) -
Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows
por: Fränzl, Martin, et al.
Publicado: (2022) -
Design and control of swarm dynamics
por: Bouffanais, Roland
Publicado: (2016) -
Hydrodynamic Model for Conductivity in Graphene
por: Mendoza, M., et al.
Publicado: (2013) -
Hydrodynamics of Explosion: Experiments and Models
por: Kedrinskii, Valery K
Publicado: (2005)