Cargando…
Investigation on the Injury Severity of Drivers in Rear-End Collisions Between Cars Using a Random Parameters Bivariate Ordered Probit Model
The existing studies on drivers’ injury severity include numerous statistical models that assess potential factors affecting the level of injury. These models should address specific concerns tailored to different crash characteristics. For rear-end crashes, potential correlation in injury severity...
Autores principales: | Chen, Feng, Song, Mingtao, Ma, Xiaoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678079/ https://www.ncbi.nlm.nih.gov/pubmed/31340600 http://dx.doi.org/10.3390/ijerph16142632 |
Ejemplares similares
-
A Random Parameters Ordered Probit Analysis of Injury Severity in Truck Involved Rear-End Collisions
por: Shao, Xiaojun, et al.
Publicado: (2020) -
A Semiparametric Bivariate Probit Model for Joint Modeling of Outcomes in STEMI Patients
por: Ieva, Francesca, et al.
Publicado: (2014) -
Awareness and acceptability of human papillomavirus vaccine: an application of the instrumental variables bivariate probit model
por: Do, Young Kyung, et al.
Publicado: (2012) -
Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China
por: Zhou, Jibiao, et al.
Publicado: (2022) -
Relationship between truck driver fatigue and rear-end collision risk
por: Mizuno, Kei, et al.
Publicado: (2020)