Cargando…
Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678083/ https://www.ncbi.nlm.nih.gov/pubmed/31324026 http://dx.doi.org/10.3390/jcm8070999 |
_version_ | 1783441016365252608 |
---|---|
author | Loda, Sophia Krebs, Jonathan Danhof, Sophia Schreder, Martin Solimando, Antonio G. Strifler, Susanne Rasche, Leo Kortüm, Martin Kerscher, Alexander Knop, Stefan Puppe, Frank Einsele, Hermann Bittrich, Max |
author_facet | Loda, Sophia Krebs, Jonathan Danhof, Sophia Schreder, Martin Solimando, Antonio G. Strifler, Susanne Rasche, Leo Kortüm, Martin Kerscher, Alexander Knop, Stefan Puppe, Frank Einsele, Hermann Bittrich, Max |
author_sort | Loda, Sophia |
collection | PubMed |
description | Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. |
format | Online Article Text |
id | pubmed-6678083 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66780832019-08-19 Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research Loda, Sophia Krebs, Jonathan Danhof, Sophia Schreder, Martin Solimando, Antonio G. Strifler, Susanne Rasche, Leo Kortüm, Martin Kerscher, Alexander Knop, Stefan Puppe, Frank Einsele, Hermann Bittrich, Max J Clin Med Article Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. MDPI 2019-07-09 /pmc/articles/PMC6678083/ /pubmed/31324026 http://dx.doi.org/10.3390/jcm8070999 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Loda, Sophia Krebs, Jonathan Danhof, Sophia Schreder, Martin Solimando, Antonio G. Strifler, Susanne Rasche, Leo Kortüm, Martin Kerscher, Alexander Knop, Stefan Puppe, Frank Einsele, Hermann Bittrich, Max Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title | Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title_full | Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title_fullStr | Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title_full_unstemmed | Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title_short | Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research |
title_sort | exploration of artificial intelligence use with aries in multiple myeloma research |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678083/ https://www.ncbi.nlm.nih.gov/pubmed/31324026 http://dx.doi.org/10.3390/jcm8070999 |
work_keys_str_mv | AT lodasophia explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT krebsjonathan explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT danhofsophia explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT schredermartin explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT solimandoantoniog explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT striflersusanne explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT rascheleo explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT kortummartin explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT kerscheralexander explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT knopstefan explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT puppefrank explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT einselehermann explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch AT bittrichmax explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch |