Cargando…

Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research

Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific...

Descripción completa

Detalles Bibliográficos
Autores principales: Loda, Sophia, Krebs, Jonathan, Danhof, Sophia, Schreder, Martin, Solimando, Antonio G., Strifler, Susanne, Rasche, Leo, Kortüm, Martin, Kerscher, Alexander, Knop, Stefan, Puppe, Frank, Einsele, Hermann, Bittrich, Max
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678083/
https://www.ncbi.nlm.nih.gov/pubmed/31324026
http://dx.doi.org/10.3390/jcm8070999
_version_ 1783441016365252608
author Loda, Sophia
Krebs, Jonathan
Danhof, Sophia
Schreder, Martin
Solimando, Antonio G.
Strifler, Susanne
Rasche, Leo
Kortüm, Martin
Kerscher, Alexander
Knop, Stefan
Puppe, Frank
Einsele, Hermann
Bittrich, Max
author_facet Loda, Sophia
Krebs, Jonathan
Danhof, Sophia
Schreder, Martin
Solimando, Antonio G.
Strifler, Susanne
Rasche, Leo
Kortüm, Martin
Kerscher, Alexander
Knop, Stefan
Puppe, Frank
Einsele, Hermann
Bittrich, Max
author_sort Loda, Sophia
collection PubMed
description Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice.
format Online
Article
Text
id pubmed-6678083
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-66780832019-08-19 Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research Loda, Sophia Krebs, Jonathan Danhof, Sophia Schreder, Martin Solimando, Antonio G. Strifler, Susanne Rasche, Leo Kortüm, Martin Kerscher, Alexander Knop, Stefan Puppe, Frank Einsele, Hermann Bittrich, Max J Clin Med Article Background: Natural language processing (NLP) is a powerful tool supporting the generation of Real-World Evidence (RWE). There is no NLP system that enables the extensive querying of parameters specific to multiple myeloma (MM) out of unstructured medical reports. We therefore created a MM-specific ontology to accelerate the information extraction (IE) out of unstructured text. Methods: Our MM ontology consists of extensive MM-specific and hierarchically structured attributes and values. We implemented “A Rule-based Information Extraction System” (ARIES) that uses this ontology. We evaluated ARIES on 200 randomly selected medical reports of patients diagnosed with MM. Results: Our system achieved a high F1-Score of 0.92 on the evaluation dataset with a precision of 0.87 and recall of 0.98. Conclusions: Our rule-based IE system enables the comprehensive querying of medical reports. The IE accelerates the extraction of data and enables clinicians to faster generate RWE on hematological issues. RWE helps clinicians to make decisions in an evidence-based manner. Our tool easily accelerates the integration of research evidence into everyday clinical practice. MDPI 2019-07-09 /pmc/articles/PMC6678083/ /pubmed/31324026 http://dx.doi.org/10.3390/jcm8070999 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Loda, Sophia
Krebs, Jonathan
Danhof, Sophia
Schreder, Martin
Solimando, Antonio G.
Strifler, Susanne
Rasche, Leo
Kortüm, Martin
Kerscher, Alexander
Knop, Stefan
Puppe, Frank
Einsele, Hermann
Bittrich, Max
Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title_full Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title_fullStr Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title_full_unstemmed Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title_short Exploration of Artificial Intelligence Use with ARIES in Multiple Myeloma Research
title_sort exploration of artificial intelligence use with aries in multiple myeloma research
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678083/
https://www.ncbi.nlm.nih.gov/pubmed/31324026
http://dx.doi.org/10.3390/jcm8070999
work_keys_str_mv AT lodasophia explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT krebsjonathan explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT danhofsophia explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT schredermartin explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT solimandoantoniog explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT striflersusanne explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT rascheleo explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT kortummartin explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT kerscheralexander explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT knopstefan explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT puppefrank explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT einselehermann explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch
AT bittrichmax explorationofartificialintelligenceusewithariesinmultiplemyelomaresearch