Cargando…
Thermal Stability and Flammability Behavior of Poly(3-hydroxybutyrate) (PHB) Based Composites
A series of samples based on poly(3-hydroxybutyrate) (PHB) containing five different additives were prepared and their thermal stability and flammability were discussed. The samples first underwent flammability screening by using Pyrolysis Combustion Flow Calorimeter (PCFC) analyses. Then, four samp...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678119/ https://www.ncbi.nlm.nih.gov/pubmed/31336793 http://dx.doi.org/10.3390/ma12142239 |
Sumario: | A series of samples based on poly(3-hydroxybutyrate) (PHB) containing five different additives were prepared and their thermal stability and flammability were discussed. The samples first underwent flammability screening by using Pyrolysis Combustion Flow Calorimeter (PCFC) analyses. Then, four samples were selected for further investigations. PHB composites containing sepiolite (Sep.) inorganic nanofiller, and also organic ammonium polyphosphate (APP) were examined for flammability and thermal behavior using PCFC, thermogravimetric analysis (TGA), flame test, and Differential Scanning Calorimetry (DSC) analyses. Moreover, burning behavior of samples were captured on a digital camera to give a deeper sense of their flammability character for comparison. The results revealed a significant improvement of flammability and thermal stability of composites, particularly in the presence of sepiolite with respect to the value obtained for unfilled PHB. Regarding TGA results, the char residue yield was increased to ca. 20.0 wt.% in the presence of sepiolite, while 0.0 wt.% was observed for PHB. PCFC measurements uncovered higher performance of PHB-Sep. sample as signaled by 40% reduction in the peak of heat release rate with respect to PHB. According to observations, PHB-Sep. sample showed non-dripping behavior with high capacity of charring in the presence of Sep. in a vertical flame test. |
---|