Cargando…
Quantitative Structure–Retention Relationships with Non-Linear Programming for Prediction of Chromatographic Elution Order
In this work, we employed a non-linear programming (NLP) approach via quantitative structure–retention relationships (QSRRs) modelling for prediction of elution order in reversed phase-liquid chromatography. With our rapid and efficient approach, error in prediction of retention time is sacrificed i...
Autores principales: | Liu, J. Jay, Alipuly, Alham, Bączek, Tomasz, Wong, Ming Wah, Žuvela, Petar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678770/ https://www.ncbi.nlm.nih.gov/pubmed/31336981 http://dx.doi.org/10.3390/ijms20143443 |
Ejemplares similares
-
Prediction of Chromatographic Elution Order of Analytical Mixtures Based on Quantitative Structure-Retention Relationships and Multi-Objective Optimization
por: Žuvela, Petar, et al.
Publicado: (2020) -
Mechanistic Chromatographic Column Characterization for the Analysis of Flavonoids Using Quantitative Structure-Retention Relationships Based on Density Functional Theory
por: Buszewski, Bogusław, et al.
Publicado: (2020) -
Non-Linear Quantitative Structure–Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants
por: Žuvela, Petar, et al.
Publicado: (2019) -
Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes
por: Žuvela, Petar, et al.
Publicado: (2018) -
Lipophilicity Determination of Antifungal Isoxazolo[3,4-b]pyridin-3(1H)-ones and Their N1-Substituted Derivatives with Chromatographic and Computational Methods
por: Ciura, Krzesimir, et al.
Publicado: (2019)