Cargando…
Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome
Kyphoscoliotic Ehlers–Danlos Syndrome (kEDS) is a rare genetic heterogeneous disease clinically characterized by congenital muscle hypotonia, kyphoscoliosis, and joint hypermobility. kEDS is caused by biallelic pathogenic variants in either PLOD1 or FKBP14. PLOD1 encodes the lysyl hydroxylase 1 enzy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678841/ https://www.ncbi.nlm.nih.gov/pubmed/31288483 http://dx.doi.org/10.3390/genes10070517 |
_version_ | 1783441197818183680 |
---|---|
author | Lim, Pei Jin Lindert, Uschi Opitz, Lennart Hausser, Ingrid Rohrbach, Marianne Giunta, Cecilia |
author_facet | Lim, Pei Jin Lindert, Uschi Opitz, Lennart Hausser, Ingrid Rohrbach, Marianne Giunta, Cecilia |
author_sort | Lim, Pei Jin |
collection | PubMed |
description | Kyphoscoliotic Ehlers–Danlos Syndrome (kEDS) is a rare genetic heterogeneous disease clinically characterized by congenital muscle hypotonia, kyphoscoliosis, and joint hypermobility. kEDS is caused by biallelic pathogenic variants in either PLOD1 or FKBP14. PLOD1 encodes the lysyl hydroxylase 1 enzyme responsible for hydroxylating lysyl residues in the collagen helix, which undergo glycosylation and form crosslinks in the extracellular matrix thus contributing to collagen fibril strength. FKBP14 encodes a peptidyl-prolyl cis–trans isomerase that catalyzes collagen folding and acts as a chaperone for types III, VI, and X collagen. Despite genetic heterogeneity, affected patients with mutations in either PLOD1 or FKBP14 are clinically indistinguishable. We aim to better understand the pathomechanism of kEDS to characterize distinguishing and overlapping molecular features underlying PLOD1-kEDS and FKBP14-kEDS, and to identify novel molecular targets that may expand treatment strategies. Transcriptome profiling by RNA sequencing of patient-derived skin fibroblasts revealed differential expression of genes encoding extracellular matrix components that are unique between PLOD1-kEDS and FKBP14-kEDS. Furthermore, we identified genes involved in inner ear development, vascular remodeling, endoplasmic reticulum (ER) stress, and protein trafficking that were differentially expressed in patient fibroblasts compared to controls. Overall, our study presents the first transcriptomics data in kEDS revealing distinct molecular features between PLOD1-kEDS and FKBP14-kEDS, and serves as a tool to better understand the disease. |
format | Online Article Text |
id | pubmed-6678841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66788412019-08-19 Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome Lim, Pei Jin Lindert, Uschi Opitz, Lennart Hausser, Ingrid Rohrbach, Marianne Giunta, Cecilia Genes (Basel) Article Kyphoscoliotic Ehlers–Danlos Syndrome (kEDS) is a rare genetic heterogeneous disease clinically characterized by congenital muscle hypotonia, kyphoscoliosis, and joint hypermobility. kEDS is caused by biallelic pathogenic variants in either PLOD1 or FKBP14. PLOD1 encodes the lysyl hydroxylase 1 enzyme responsible for hydroxylating lysyl residues in the collagen helix, which undergo glycosylation and form crosslinks in the extracellular matrix thus contributing to collagen fibril strength. FKBP14 encodes a peptidyl-prolyl cis–trans isomerase that catalyzes collagen folding and acts as a chaperone for types III, VI, and X collagen. Despite genetic heterogeneity, affected patients with mutations in either PLOD1 or FKBP14 are clinically indistinguishable. We aim to better understand the pathomechanism of kEDS to characterize distinguishing and overlapping molecular features underlying PLOD1-kEDS and FKBP14-kEDS, and to identify novel molecular targets that may expand treatment strategies. Transcriptome profiling by RNA sequencing of patient-derived skin fibroblasts revealed differential expression of genes encoding extracellular matrix components that are unique between PLOD1-kEDS and FKBP14-kEDS. Furthermore, we identified genes involved in inner ear development, vascular remodeling, endoplasmic reticulum (ER) stress, and protein trafficking that were differentially expressed in patient fibroblasts compared to controls. Overall, our study presents the first transcriptomics data in kEDS revealing distinct molecular features between PLOD1-kEDS and FKBP14-kEDS, and serves as a tool to better understand the disease. MDPI 2019-07-08 /pmc/articles/PMC6678841/ /pubmed/31288483 http://dx.doi.org/10.3390/genes10070517 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lim, Pei Jin Lindert, Uschi Opitz, Lennart Hausser, Ingrid Rohrbach, Marianne Giunta, Cecilia Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title | Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title_full | Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title_fullStr | Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title_full_unstemmed | Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title_short | Transcriptome Profiling of Primary Skin Fibroblasts Reveal Distinct Molecular Features Between PLOD1- and FKBP14-Kyphoscoliotic Ehlers–Danlos Syndrome |
title_sort | transcriptome profiling of primary skin fibroblasts reveal distinct molecular features between plod1- and fkbp14-kyphoscoliotic ehlers–danlos syndrome |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6678841/ https://www.ncbi.nlm.nih.gov/pubmed/31288483 http://dx.doi.org/10.3390/genes10070517 |
work_keys_str_mv | AT limpeijin transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome AT lindertuschi transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome AT opitzlennart transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome AT hausseringrid transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome AT rohrbachmarianne transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome AT giuntacecilia transcriptomeprofilingofprimaryskinfibroblastsrevealdistinctmolecularfeaturesbetweenplod1andfkbp14kyphoscolioticehlersdanlossyndrome |