Cargando…
Adaptive Consensus-Based Unscented Information Filter for Tracking Target with Maneuver and Colored Noise
Distributed state estimation plays a key role in space situation awareness via a sensor network. This paper proposes two adaptive consensus-based unscented information filters for tracking target with maneuver and colored measurement noise. The proposed filters can fulfill the distributed estimation...
Autores principales: | Li, Zhao, Wang, Yidi, Zheng, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679229/ https://www.ncbi.nlm.nih.gov/pubmed/31336785 http://dx.doi.org/10.3390/s19143069 |
Ejemplares similares
-
Auxiliary Truncated Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking
por: Li, Liang-Qun, et al.
Publicado: (2017) -
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance
por: Ge, Baoshuang, et al.
Publicado: (2019) -
DOA Tracking Based on Unscented Transform Multi-Bernoulli Filter in Impulse Noise Environment
por: Wu, Sun-yong, et al.
Publicado: (2019) -
Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion
por: Wang, Dapeng, et al.
Publicado: (2021) -
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
por: Zheng, Binqi, et al.
Publicado: (2018)