Cargando…
Full-Waveform LiDAR Point Clouds Classification Based on Wavelet Support Vector Machine and Ensemble Learning
Light Detection and Ranging (LiDAR) produces 3D point clouds that describe ground objects, and has been used to make object interpretation in many cases. However, traditional LiDAR only records discrete echo signals and provides limited feature parameters of point clouds, while full-waveform LiDAR (...
Autores principales: | Lai, Xudong, Yuan, Yifei, Li, Yongxu, Wang, Mingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679236/ https://www.ncbi.nlm.nih.gov/pubmed/31331086 http://dx.doi.org/10.3390/s19143191 |
Ejemplares similares
-
Airborne LiDAR point cloud classification using PointNet++ network with full neighborhood features
por: Nong, Xingzhong, et al.
Publicado: (2023) -
Calibration of the Pulse Signal Decay Effect of Full-Waveform Hyperspectral LiDAR
por: Zhang, Changsai, et al.
Publicado: (2019) -
Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
por: Diab, Ahmed, et al.
Publicado: (2022) -
LiDAR Point Cloud Generation for SLAM Algorithm Evaluation
por: Sobczak, Łukasz, et al.
Publicado: (2021) -
FWNet: Semantic Segmentation for Full-Waveform LiDAR Data Using Deep Learning
por: Shinohara, Takayuki, et al.
Publicado: (2020)