Cargando…
AULD: Large Scale Suspicious DNS Activities Detection via Unsupervised Learning in Advanced Persistent Threats
In recent years, sensors in the Internet of things have been commonly used in Human’s life. APT (Advanced Persistent Threats) has caused serious damage to network security and the sensors play an important role in the attack process. For a long time, attackers infiltrate, attack, conceal, spread, an...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679267/ https://www.ncbi.nlm.nih.gov/pubmed/31330986 http://dx.doi.org/10.3390/s19143180 |
Sumario: | In recent years, sensors in the Internet of things have been commonly used in Human’s life. APT (Advanced Persistent Threats) has caused serious damage to network security and the sensors play an important role in the attack process. For a long time, attackers infiltrate, attack, conceal, spread, and steal information of target groups through the compound use of various attacking means, while existing security measures based on single-time nodes cannot defend against such attacks. Attackers often exploit the sensors’ vulnerabilities to attack targets because the security level of the sensors is relatively low when compared with that of the host. We can find APT attacks by checking the suspicious domains generated at different APT attack stages, since every APT attack has to use DNS to communicate. Although this method works, two challenges still exist: (1) the detection method needs to check a large scale of log data; (2) the small number of attacking samples limits conventional supervised learning. This paper proposes an APT detection framework AULD (Advanced Persistent Threats Unsupervised Learning Detection) to detect suspicious domains in APT attacks by using unsupervised learning. We extract ten important features from the host, domain name, and time from a large number of DNS log data. Later, we get the suspicious cluster by performing unsupervised learning. We put all of the domains in the cluster into the list of malicious domains. We collected 1,584,225,274 DNS records from our university network. The experiments show that AULD detected all of the attacking samples and that AULD can effectively detect the suspicious domain names in APT attacks. |
---|