Cargando…

Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning

Deployment of large-scale wind turbines requires sophisticated operation and maintenance strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing condition moni...

Descripción completa

Detalles Bibliográficos
Autores principales: Elasha, Faris, Shanbr, Suliman, Li, Xiaochuan, Mba, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679281/
https://www.ncbi.nlm.nih.gov/pubmed/31336974
http://dx.doi.org/10.3390/s19143092
Descripción
Sumario:Deployment of large-scale wind turbines requires sophisticated operation and maintenance strategies to ensure the devices are safe, profitable and cost-effective. Prognostics aims to predict the remaining useful life (RUL) of physical systems based on condition measurements. Analyzing condition monitoring data, implementing diagnostic techniques and using machinery prognostic algorithms will bring about accurate estimation of the remaining life and possible failures that may occur. This paper proposes to combine two supervised machine learning techniques, namely, regression model and multilayer artificial neural network model, to predict the RUL of an operational wind turbine gearbox using vibration measurements. Root Mean Square (RMS), Kurtosis (KU) and Energy Index (EI) were analysed to define the bearing failure stages. The proposed methodology was evaluated through a case study involving vibration measurements of a high-speed shaft bearing used in a wind turbine gearbox.