Cargando…
A Low-Delay Lightweight Recurrent Neural Network (LLRNN) for Rotating Machinery Fault Diagnosis
Fault diagnosis is critical to ensuring the safety and reliable operation of rotating machinery systems. Long short-term memory networks (LSTM) have received a great deal of attention in this field. Most of the LSTM-based fault diagnosis methods have too many parameters and calculation, resulting in...
Autores principales: | Liu, Wenkai, Guo, Ping, Ye, Lian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679287/ https://www.ncbi.nlm.nih.gov/pubmed/31337108 http://dx.doi.org/10.3390/s19143109 |
Ejemplares similares
-
Rotating machinery fault diagnosis based on a novel lightweight convolutional neural network
por: Yan, Jing, et al.
Publicado: (2021) -
A Lighted Deep Convolutional Neural Network Based Fault Diagnosis of Rotating Machinery
por: Ma, Shangjun, et al.
Publicado: (2019) -
Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
por: Li, Hongmei, et al.
Publicado: (2020) -
Ensemble Dilated Convolutional Neural Network and Its Application in Rotating Machinery Fault Diagnosis
por: Cai, Yuxiang, et al.
Publicado: (2022) -
A Novel Method for Fault Diagnosis of Rotating Machinery
por: Tang, Meng, et al.
Publicado: (2022)