Cargando…
IoTDS: A One-Class Classification Approach to Detect Botnets in Internet of Things Devices
Internet of Things (IoT) devices have become increasingly widespread. Despite their potential of improving multiple application domains, these devices have poor security, which can be explored by attackers to build large-scale botnets. In this work, we propose a host-based approach to detect botnets...
Autores principales: | Bezerra, Vitor Hugo, da Costa, Victor Guilherme Turrisi, Barbon Junior, Sylvio, Miani, Rodrigo Sanches, Zarpelão, Bruno Bogaz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679338/ https://www.ncbi.nlm.nih.gov/pubmed/31331071 http://dx.doi.org/10.3390/s19143188 |
Ejemplares similares
-
Time Series Segmentation Based on Stationarity Analysis to Improve New Samples Prediction
por: Silva, Ricardo Petri, et al.
Publicado: (2021) -
Lightweight Internet of Things Botnet Detection Using One-Class Classification
por: Malik, Kainat, et al.
Publicado: (2022) -
Using honeypots to model botnet attacks on the internet of medical things()
por: Wang, Huanran, et al.
Publicado: (2022) -
SMOTE-DRNN: A Deep Learning Algorithm for Botnet Detection in the Internet-of-Things Networks
por: Popoola, Segun I., et al.
Publicado: (2021) -
Botnet Attack Detection in IoT Using Machine Learning
por: Alissa, Khalid, et al.
Publicado: (2022)