Cargando…
Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists
Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A(3) adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679372/ https://www.ncbi.nlm.nih.gov/pubmed/31315296 http://dx.doi.org/10.3390/ijms20143499 |
_version_ | 1783441319515914240 |
---|---|
author | Jandova, Zuzana Jespers, Willem Sotelo, Eddy Gutiérrez-de-Terán, Hugo Oostenbrink, Chris |
author_facet | Jandova, Zuzana Jespers, Willem Sotelo, Eddy Gutiérrez-de-Terán, Hugo Oostenbrink, Chris |
author_sort | Jandova, Zuzana |
collection | PubMed |
description | Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A(3) adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors via molecular dynamics simulations. With a combined approach of thermodynamic integration and one-step perturbation, we characterize the impact of the charge distribution in a central heteroaromatic ring on the binding affinity prediction. Standard charge distributions according to the GROMOS force field yield values in good agreement with the experimental data and previous free energy calculations. Subsequently, we examine the thermodynamics of inhibitor binding in terms of the energetic and entropic contributions. The highest entropy penalties are found for inhibitors with methoxy substituents in meta position of the aryl groups. This bulky group restricts rotation of aromatic rings attached to the pyrimidine core which leads to two distinct poses of the ligand. Our predictions support the previously proposed binding pose for the o-methoxy ligand, yielding in this case a very good correlation with the experimentally measured affinities with deviations below 4 kJ/mol. |
format | Online Article Text |
id | pubmed-6679372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66793722019-08-19 Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists Jandova, Zuzana Jespers, Willem Sotelo, Eddy Gutiérrez-de-Terán, Hugo Oostenbrink, Chris Int J Mol Sci Article Adenosine receptors are a family of G protein-coupled receptors with increased attention as drug targets on different indications. We investigate the thermodynamics of ligand binding to the A(3) adenosine receptor subtype, focusing on a recently reported series of diarylacetamidopyridine inhibitors via molecular dynamics simulations. With a combined approach of thermodynamic integration and one-step perturbation, we characterize the impact of the charge distribution in a central heteroaromatic ring on the binding affinity prediction. Standard charge distributions according to the GROMOS force field yield values in good agreement with the experimental data and previous free energy calculations. Subsequently, we examine the thermodynamics of inhibitor binding in terms of the energetic and entropic contributions. The highest entropy penalties are found for inhibitors with methoxy substituents in meta position of the aryl groups. This bulky group restricts rotation of aromatic rings attached to the pyrimidine core which leads to two distinct poses of the ligand. Our predictions support the previously proposed binding pose for the o-methoxy ligand, yielding in this case a very good correlation with the experimentally measured affinities with deviations below 4 kJ/mol. MDPI 2019-07-16 /pmc/articles/PMC6679372/ /pubmed/31315296 http://dx.doi.org/10.3390/ijms20143499 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jandova, Zuzana Jespers, Willem Sotelo, Eddy Gutiérrez-de-Terán, Hugo Oostenbrink, Chris Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title | Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title_full | Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title_fullStr | Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title_full_unstemmed | Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title_short | Free-Energy Calculations for Bioisosteric Modifications of A(3) Adenosine Receptor Antagonists |
title_sort | free-energy calculations for bioisosteric modifications of a(3) adenosine receptor antagonists |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679372/ https://www.ncbi.nlm.nih.gov/pubmed/31315296 http://dx.doi.org/10.3390/ijms20143499 |
work_keys_str_mv | AT jandovazuzana freeenergycalculationsforbioisostericmodificationsofa3adenosinereceptorantagonists AT jesperswillem freeenergycalculationsforbioisostericmodificationsofa3adenosinereceptorantagonists AT soteloeddy freeenergycalculationsforbioisostericmodificationsofa3adenosinereceptorantagonists AT gutierrezdeteranhugo freeenergycalculationsforbioisostericmodificationsofa3adenosinereceptorantagonists AT oostenbrinkchris freeenergycalculationsforbioisostericmodificationsofa3adenosinereceptorantagonists |