Cargando…
Triptolide attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of NF-κB pathway
BACKGROUND: Endothelial cell inflammation is a central event in the pathogenesis of numerous cardiovascular diseases, including sepsis and atherosclerosis. Triptolide, a principal bioactive ingredient of Traditional Chinese Medicine Tripterygium wilfordii Hook.F., displays anti-inflammatory actions...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679459/ https://www.ncbi.nlm.nih.gov/pubmed/31375092 http://dx.doi.org/10.1186/s12906-019-2616-3 |
Sumario: | BACKGROUND: Endothelial cell inflammation is a central event in the pathogenesis of numerous cardiovascular diseases, including sepsis and atherosclerosis. Triptolide, a principal bioactive ingredient of Traditional Chinese Medicine Tripterygium wilfordii Hook.F., displays anti-inflammatory actions in vivo. However, the mechanisms underlying these beneficial effects remain undetermined. The present study investigated the effects and possible mechanisms of triptolide on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs). METHODS: The effects of triptolide on the LPS-induced production and expression of inflammatory molecules, monocyte adhesion and activation of nuclear factor (NF)-κB pathway were examined in cultured HUVECs. RESULTS: In cultured HUVECs, pre-treatment with triptolide dose-dependently attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression and monocyte adhesion. Mechanistically, triptolide was found to dose-dependently inhibit the LPS-induced increases in the DNA binding activity of NF-κB p65 associated with attenuating IκBα phosphorylation and its degradation. Additionally, the present study revealed that triptolide inhibited LPS-triggered NF-κB transcriptional activation in a dose-dependent manner. CONCLUSIONS: The results of the present study indicated that triptolide suppresses the inflammatory response of endothelial cells possibly via inhibition of NF-κB activation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12906-019-2616-3) contains supplementary material, which is available to authorized users. |
---|