Cargando…
Bare Soil Surface Moisture Retrieval from Sentinel-1 SAR Data Based on the Calibrated IEM and Dubois Models Using Neural Networks
The main purpose of this study is to investigate the performance of two radar backscattering models; the calibrated integral equation model (CIEM) and the modified Dubois model (MDB) over an agricultural area in Karaj, Iran. In the first part, the performance of the models is evaluated based on the...
Autores principales: | Mirsoleimani, Hamid Reza, Sahebi, Mahmod Reza, Baghdadi, Nicolas, El Hajj, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679500/ https://www.ncbi.nlm.nih.gov/pubmed/31330897 http://dx.doi.org/10.3390/s19143209 |
Ejemplares similares
-
Potential of Sentinel-1 Surface Soil Moisture Product for Detecting Heavy Rainfall in the South of France
por: Bazzi, Hassan, et al.
Publicado: (2019) -
On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar
por: Verhoest, Niko E.C, et al.
Publicado: (2008) -
Paul Dubois
Publicado: (1896) -
Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution
por: Gao, Qi, et al.
Publicado: (2017) -
Soil Moisture Retrieval in Farmland Areas with Sentinel Multi-Source Data Based on Regression Convolutional Neural Networks
por: Liu, Jian, et al.
Publicado: (2021)