Cargando…
A Novel Centralized Range-Free Static Node Localization Algorithm with Memetic Algorithm and Lévy Flight
Node localization, which is formulated as an unconstrained NP-hard optimization problem, is considered as one of the most significant issues of wireless sensor networks (WSNs). Recently, many swarm intelligent algorithms (SIAs) were applied to solve this problem. This study aimed to determine node l...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679518/ https://www.ncbi.nlm.nih.gov/pubmed/31340577 http://dx.doi.org/10.3390/s19143242 |
Sumario: | Node localization, which is formulated as an unconstrained NP-hard optimization problem, is considered as one of the most significant issues of wireless sensor networks (WSNs). Recently, many swarm intelligent algorithms (SIAs) were applied to solve this problem. This study aimed to determine node location with high precision by SIA and presented a new localization algorithm named LMQPDV-hop. In LMQPDV-hop, an improved DV-Hop was employed as an underground mechanism to gather the estimation distance, in which the average hop distance was modified by a defined weight to reduce the distance errors among nodes. Furthermore, an efficient quantum-behaved particle swarm optimization algorithm (QPSO), named LMQPSO, was developed to find the best coordinates of unknown nodes. In LMQPSO, the memetic algorithm (MA) and Lévy flight were introduced into QPSO to enhance the global searching ability and a new fast local search rule was designed to speed up the convergence. Extensive simulations were conducted on different WSN deployment scenarios to evaluate the performance of the new algorithm and the results show that the new algorithm can effectively improve position precision. |
---|