Cargando…

Underwater Spiral Wave Sound Source Based on Phased Array with Three Transducers

This paper realizes an underwater spiral wave sound source by using three omni-directional spherical transducers with three different phases. The pressure distribution of the sound field for a phased array is derived using the superposition theory of sound field. The generation of spiral wave field...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Wei, Guo, Rongzhen, Lan, Yu, Sun, Hao, Li, Shichang, Zhou, Tianfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679567/
https://www.ncbi.nlm.nih.gov/pubmed/31331107
http://dx.doi.org/10.3390/s19143192
Descripción
Sumario:This paper realizes an underwater spiral wave sound source by using three omni-directional spherical transducers with three different phases. The pressure distribution of the sound field for a phased array is derived using the superposition theory of sound field. The generation of spiral wave field is presented, the relationship between the performance of phased array sound field and the array parameters is analyzed, and also verified by the finite element method (FEM). A spiral wave sound source with three spherical piezoelectric ceramic transducers is then designed and fabricated based on FEM simulation, and the performance of the sound source is analyzed. Measurements are made in a reverberation pool, and the result shows that the fabricated spiral wave sound source is capable of producing a spiral sound wave. Under a frequency of 3.5 kHz, the phase directivity has a fluctuation of ±21°, and the amplitude directivity range is 4.3 dB, which verifies the realization of the spiral wave sound source.