Cargando…
The Extension of Phase Correlation to Image Perspective Distortions Based on Particle Swarm Optimization
Phase correlation is one of the widely used image registration method in medical image processing and remote sensing. One of the main limitations of the phase correlation-based registration method is that it can only cope with Euclidean transformations, such as translation, rotation and scale, which...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679575/ https://www.ncbi.nlm.nih.gov/pubmed/31311106 http://dx.doi.org/10.3390/s19143117 |
Sumario: | Phase correlation is one of the widely used image registration method in medical image processing and remote sensing. One of the main limitations of the phase correlation-based registration method is that it can only cope with Euclidean transformations, such as translation, rotation and scale, which constrain its application in wider fields, such as multi-view image matching, image-based navigation, etc. In this paper, we extended the phase correlation to perspective transformation by the combination of particle swarm optimization. Inspired by optic lens alignment based on interference, we propose to use the quality of PC fringes as the similarity, and then the aim of registration is to search for the optimized geometric transformation operator, which obtain the maximize value of PC-based similarity function through particle swarm optimization approach. The proposed method is validated by image registration experiments using simulated terrain shading, texture and natural landscape images containing different challenges, including illumination variation, lack of texture, motion blur, occlusion and geometric distortions. Further, image-based navigation experiments are carried out to demonstrate that the proposed method is able to correctly recover the trajectory of camera using multimodal target and reference image. Even under great radiometric and geometric distortions, the proposed method is able to achieve 0.1 sub-pixel matching accuracy on average while other methods fail to find the correspondence. |
---|