Cargando…
Modeling longitudinal imaging biomarkers with parametric Bayesian multi‐task learning
Longitudinal imaging biomarkers are invaluable for understanding the course of neurodegeneration, promising the ability to track disease progression and to detect disease earlier than cross‐sectional biomarkers. To properly realize their potential, biomarker trajectory models must be robust to both...
Autores principales: | Aksman, Leon M., Scelsi, Marzia A., Marquand, Andre F., Alexander, Daniel C., Ourselin, Sebastien, Altmann, Andre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679792/ https://www.ncbi.nlm.nih.gov/pubmed/31168892 http://dx.doi.org/10.1002/hbm.24682 |
Ejemplares similares
-
Bayesian multi-task learning for decoding multi-subject neuroimaging data
por: Marquand, Andre F., et al.
Publicado: (2014) -
A comprehensive analysis of methods for assessing polygenic burden on Alzheimer’s disease pathology and risk beyond APOE
por: Altmann, Andre, et al.
Publicado: (2019) -
Genetic study of multimodal imaging Alzheimer’s disease progression score implicates novel loci
por: Scelsi, Marzia A, et al.
Publicado: (2018) -
Making use of longitudinal information in pattern recognition
por: Aksman, Leon M., et al.
Publicado: (2016) -
A data-driven study of Alzheimer's disease related amyloid and tau pathology progression
por: Aksman, Leon M, et al.
Publicado: (2023)