Cargando…

Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy

Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally‐induced processes, therapeutic ablation of targeted tissues with IRE uses a...

Descripción completa

Detalles Bibliográficos
Autores principales: Davalos, Rafael V., Bhonsle, Suyashree, Neal, Robert E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680146/
https://www.ncbi.nlm.nih.gov/pubmed/25809014
http://dx.doi.org/10.1002/pros.22986
_version_ 1783441442831597568
author Davalos, Rafael V.
Bhonsle, Suyashree
Neal, Robert E.
author_facet Davalos, Rafael V.
Bhonsle, Suyashree
Neal, Robert E.
author_sort Davalos, Rafael V.
collection PubMed
description Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally‐induced processes, therapeutic ablation of targeted tissues with IRE uses a series of brief electric pulses, whose parameters result in secondary Joule heating of the tissue. Where contemporary clinical pulse protocols use aggressive energy regimes, additional evidence is supplementing original studies that assert care must be taken in clinical ablation protocols to ensure the cumulative thermal effects do not induce damage that will alter outcomes for therapies using the IRE non‐thermal cell death process for tissue ablation. In this letter, we seek to clarify the nomenclature regarding IRE as a non‐thermal ablation technique, as well as identify existing literature that uses experimental, clinical, and numerical results to discretely address and evaluate the thermal considerations relevant when applying IRE in clinical scenarios, including several approaches for reducing these effects. Existing evidence in the literature describes cell response to electric fields, suggesting cell death from IRE is a unique process, independent from traditional thermal damage. Numerical simulations, as well as preclinical and clinical findings demonstrate the ability to deliver therapeutic IRE ablation without occurrence of morbidity associated with thermal therapies. Clinical IRE therapy generates thermal effects, which may moderate the non‐thermal aspects of IRE ablation. Appropriate protocol development, utilization, and pulse delivery devices may be implemented to restrain these effects and maintain IRE as the vastly predominant tissue death modality, reducing therapy‐mitigating thermal damage. Clinical applications of IRE should consider thermal effects and employ protocols to ensure safe and effective therapy delivery. Prostate 75:1114–1118, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.
format Online
Article
Text
id pubmed-6680146
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-66801462019-08-09 Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy Davalos, Rafael V. Bhonsle, Suyashree Neal, Robert E. Prostate Letter to the Editor Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally‐induced processes, therapeutic ablation of targeted tissues with IRE uses a series of brief electric pulses, whose parameters result in secondary Joule heating of the tissue. Where contemporary clinical pulse protocols use aggressive energy regimes, additional evidence is supplementing original studies that assert care must be taken in clinical ablation protocols to ensure the cumulative thermal effects do not induce damage that will alter outcomes for therapies using the IRE non‐thermal cell death process for tissue ablation. In this letter, we seek to clarify the nomenclature regarding IRE as a non‐thermal ablation technique, as well as identify existing literature that uses experimental, clinical, and numerical results to discretely address and evaluate the thermal considerations relevant when applying IRE in clinical scenarios, including several approaches for reducing these effects. Existing evidence in the literature describes cell response to electric fields, suggesting cell death from IRE is a unique process, independent from traditional thermal damage. Numerical simulations, as well as preclinical and clinical findings demonstrate the ability to deliver therapeutic IRE ablation without occurrence of morbidity associated with thermal therapies. Clinical IRE therapy generates thermal effects, which may moderate the non‐thermal aspects of IRE ablation. Appropriate protocol development, utilization, and pulse delivery devices may be implemented to restrain these effects and maintain IRE as the vastly predominant tissue death modality, reducing therapy‐mitigating thermal damage. Clinical applications of IRE should consider thermal effects and employ protocols to ensure safe and effective therapy delivery. Prostate 75:1114–1118, 2015. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. John Wiley and Sons Inc. 2015-03-23 2015-07-01 /pmc/articles/PMC6680146/ /pubmed/25809014 http://dx.doi.org/10.1002/pros.22986 Text en © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Letter to the Editor
Davalos, Rafael V.
Bhonsle, Suyashree
Neal, Robert E.
Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title_full Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title_fullStr Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title_full_unstemmed Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title_short Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
title_sort implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy
topic Letter to the Editor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680146/
https://www.ncbi.nlm.nih.gov/pubmed/25809014
http://dx.doi.org/10.1002/pros.22986
work_keys_str_mv AT davalosrafaelv implicationsandconsiderationsofthermaleffectswhenapplyingirreversibleelectroporationtissueablationtherapy
AT bhonslesuyashree implicationsandconsiderationsofthermaleffectswhenapplyingirreversibleelectroporationtissueablationtherapy
AT nealroberte implicationsandconsiderationsofthermaleffectswhenapplyingirreversibleelectroporationtissueablationtherapy