Cargando…

Accelerated estimation and permutation inference for ACE modeling

There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Xu, Formisano, Elia, Blokland, Gabriëlla A. M., Strike, Lachlan T., McMahon, Katie L., de Zubicaray, Greig I., Thompson, Paul M., Wright, Margaret J., Winkler, Anderson M., Ge, Tian, Nichols, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680147/
https://www.ncbi.nlm.nih.gov/pubmed/31037793
http://dx.doi.org/10.1002/hbm.24611
_version_ 1783441443073818624
author Chen, Xu
Formisano, Elia
Blokland, Gabriëlla A. M.
Strike, Lachlan T.
McMahon, Katie L.
de Zubicaray, Greig I.
Thompson, Paul M.
Wright, Margaret J.
Winkler, Anderson M.
Ge, Tian
Nichols, Thomas E.
author_facet Chen, Xu
Formisano, Elia
Blokland, Gabriëlla A. M.
Strike, Lachlan T.
McMahon, Katie L.
de Zubicaray, Greig I.
Thompson, Paul M.
Wright, Margaret J.
Winkler, Anderson M.
Ge, Tian
Nichols, Thomas E.
author_sort Chen, Xu
collection PubMed
description There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct analyses at the brain‐wide scale. Here we present a simple method for heritability estimation on twins that replaces a variance component model‐which requires iterative optimisation‐with a (noniterative) linear regression model, by transforming data to squared twin‐pair differences. We demonstrate that the method has comparable bias, mean squared error, false positive risk, and power to best practice maximum‐likelihood‐based methods, while requiring a small fraction of the computation time. Combined with permutation, we call this approach “Accelerated Permutation Inference for the ACE Model (APACE)” where ACE refers to the additive genetic (A) effects, and common (C), and unique (E) environmental influences on the trait. We show how the use of spatial statistics like cluster size can dramatically improve power, and illustrate the method on a heritability analysis of an fMRI working memory dataset.
format Online
Article
Text
id pubmed-6680147
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-66801472019-08-09 Accelerated estimation and permutation inference for ACE modeling Chen, Xu Formisano, Elia Blokland, Gabriëlla A. M. Strike, Lachlan T. McMahon, Katie L. de Zubicaray, Greig I. Thompson, Paul M. Wright, Margaret J. Winkler, Anderson M. Ge, Tian Nichols, Thomas E. Hum Brain Mapp Research Articles There are a wealth of tools for fitting linear models at each location in the brain in neuroimaging analysis, and a wealth of genetic tools for estimating heritability for a small number of phenotypes. But there remains a need for computationally efficient neuroimaging genetic tools that can conduct analyses at the brain‐wide scale. Here we present a simple method for heritability estimation on twins that replaces a variance component model‐which requires iterative optimisation‐with a (noniterative) linear regression model, by transforming data to squared twin‐pair differences. We demonstrate that the method has comparable bias, mean squared error, false positive risk, and power to best practice maximum‐likelihood‐based methods, while requiring a small fraction of the computation time. Combined with permutation, we call this approach “Accelerated Permutation Inference for the ACE Model (APACE)” where ACE refers to the additive genetic (A) effects, and common (C), and unique (E) environmental influences on the trait. We show how the use of spatial statistics like cluster size can dramatically improve power, and illustrate the method on a heritability analysis of an fMRI working memory dataset. John Wiley & Sons, Inc. 2019-04-29 /pmc/articles/PMC6680147/ /pubmed/31037793 http://dx.doi.org/10.1002/hbm.24611 Text en © 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Chen, Xu
Formisano, Elia
Blokland, Gabriëlla A. M.
Strike, Lachlan T.
McMahon, Katie L.
de Zubicaray, Greig I.
Thompson, Paul M.
Wright, Margaret J.
Winkler, Anderson M.
Ge, Tian
Nichols, Thomas E.
Accelerated estimation and permutation inference for ACE modeling
title Accelerated estimation and permutation inference for ACE modeling
title_full Accelerated estimation and permutation inference for ACE modeling
title_fullStr Accelerated estimation and permutation inference for ACE modeling
title_full_unstemmed Accelerated estimation and permutation inference for ACE modeling
title_short Accelerated estimation and permutation inference for ACE modeling
title_sort accelerated estimation and permutation inference for ace modeling
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680147/
https://www.ncbi.nlm.nih.gov/pubmed/31037793
http://dx.doi.org/10.1002/hbm.24611
work_keys_str_mv AT chenxu acceleratedestimationandpermutationinferenceforacemodeling
AT formisanoelia acceleratedestimationandpermutationinferenceforacemodeling
AT bloklandgabriellaam acceleratedestimationandpermutationinferenceforacemodeling
AT strikelachlant acceleratedestimationandpermutationinferenceforacemodeling
AT mcmahonkatiel acceleratedestimationandpermutationinferenceforacemodeling
AT dezubicaraygreigi acceleratedestimationandpermutationinferenceforacemodeling
AT thompsonpaulm acceleratedestimationandpermutationinferenceforacemodeling
AT wrightmargaretj acceleratedestimationandpermutationinferenceforacemodeling
AT winklerandersonm acceleratedestimationandpermutationinferenceforacemodeling
AT getian acceleratedestimationandpermutationinferenceforacemodeling
AT nicholsthomase acceleratedestimationandpermutationinferenceforacemodeling