Cargando…
Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies
Groundwater (GW) is one of the main potable water sources worldwide. However, the presence of undesirable compounds and particularly manganese (Mn) and iron (Fe) (mainly co-existing in GWs) are considered as objectionable components of potable water for both health and aesthetic issues. As such, ind...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680479/ https://www.ncbi.nlm.nih.gov/pubmed/31331060 http://dx.doi.org/10.3390/membranes9070090 |
_version_ | 1783441509194924032 |
---|---|
author | Haddad, Maryam Barbeau, Benoit |
author_facet | Haddad, Maryam Barbeau, Benoit |
author_sort | Haddad, Maryam |
collection | PubMed |
description | Groundwater (GW) is one of the main potable water sources worldwide. However, the presence of undesirable compounds and particularly manganese (Mn) and iron (Fe) (mainly co-existing in GWs) are considered as objectionable components of potable water for both health and aesthetic issues. As such, individual dwellings supplied by domestic wells are especially threatened by these issues. Current domestic treatment technologies are complicated to operate and even dangerous if improperly maintained (e.g., catalytic filtration) or consume salts and produce spent brine which pollutes the environment (i.e., ion exchange resins). Therefore, it is of prime importance to design a simple and compact, yet robust, system for Mn and Fe control of the domestic GW sources, which can reliably guarantee the desired Mn limit in the finished water ([Formula: see text] g/L). In the course of this study, we demonstrated, for the first time, that a hybrid hollow fiber nanofiltration (HFNF)–calcite contactor process is a promising alternative for treating domestic GWs with elevated levels of Mn, Fe, natural organic matter (NOM) and hardness. The efficacy of the HFNF membranes in terms of removal of Mn, Fe, NOM and fouling was compared with commercially available NF270 and NF90 membranes. The results revealed that HFNF (100–200 Da) and NF90 maintained considerably high rejection of Mn, Fe and NOM due to their dominant sieving effect. In contrary, the rejections of the above-mentioned components were decreased in the presence of high hardness for the looser HFNF (200–300 Da) and NF270 membranes. No membrane fouling was detected and the permeate flux was stable when the hard GW was filtered with the HFNF membranes, regardless of their molecular weight cut-off and transmembrane pressure, while the permeability of the NF270 and NF90 membranes steadily decline during the filtration. Integrating a calcite contactor, as a post filtration step, to the HFNF process yielded further Mn, Fe and NOM removals from the HFNF permeate and adjustment of its hardness level. The best performance was achieved when a blend of Calcite–CorosexTM ([Formula: see text]) was used as a post-treatment to the tight HFNF (100–200 Da). |
format | Online Article Text |
id | pubmed-6680479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66804792019-08-09 Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies Haddad, Maryam Barbeau, Benoit Membranes (Basel) Article Groundwater (GW) is one of the main potable water sources worldwide. However, the presence of undesirable compounds and particularly manganese (Mn) and iron (Fe) (mainly co-existing in GWs) are considered as objectionable components of potable water for both health and aesthetic issues. As such, individual dwellings supplied by domestic wells are especially threatened by these issues. Current domestic treatment technologies are complicated to operate and even dangerous if improperly maintained (e.g., catalytic filtration) or consume salts and produce spent brine which pollutes the environment (i.e., ion exchange resins). Therefore, it is of prime importance to design a simple and compact, yet robust, system for Mn and Fe control of the domestic GW sources, which can reliably guarantee the desired Mn limit in the finished water ([Formula: see text] g/L). In the course of this study, we demonstrated, for the first time, that a hybrid hollow fiber nanofiltration (HFNF)–calcite contactor process is a promising alternative for treating domestic GWs with elevated levels of Mn, Fe, natural organic matter (NOM) and hardness. The efficacy of the HFNF membranes in terms of removal of Mn, Fe, NOM and fouling was compared with commercially available NF270 and NF90 membranes. The results revealed that HFNF (100–200 Da) and NF90 maintained considerably high rejection of Mn, Fe and NOM due to their dominant sieving effect. In contrary, the rejections of the above-mentioned components were decreased in the presence of high hardness for the looser HFNF (200–300 Da) and NF270 membranes. No membrane fouling was detected and the permeate flux was stable when the hard GW was filtered with the HFNF membranes, regardless of their molecular weight cut-off and transmembrane pressure, while the permeability of the NF270 and NF90 membranes steadily decline during the filtration. Integrating a calcite contactor, as a post filtration step, to the HFNF process yielded further Mn, Fe and NOM removals from the HFNF permeate and adjustment of its hardness level. The best performance was achieved when a blend of Calcite–CorosexTM ([Formula: see text]) was used as a post-treatment to the tight HFNF (100–200 Da). MDPI 2019-07-19 /pmc/articles/PMC6680479/ /pubmed/31331060 http://dx.doi.org/10.3390/membranes9070090 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Haddad, Maryam Barbeau, Benoit Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title | Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title_full | Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title_fullStr | Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title_full_unstemmed | Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title_short | Hybrid Hollow Fiber Nanofiltration–Calcite Contactor: A Novel Point-of-Entry Treatment for Removal of Dissolved Mn, Fe, NOM and Hardness from Domestic Groundwater Supplies |
title_sort | hybrid hollow fiber nanofiltration–calcite contactor: a novel point-of-entry treatment for removal of dissolved mn, fe, nom and hardness from domestic groundwater supplies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680479/ https://www.ncbi.nlm.nih.gov/pubmed/31331060 http://dx.doi.org/10.3390/membranes9070090 |
work_keys_str_mv | AT haddadmaryam hybridhollowfibernanofiltrationcalcitecontactoranovelpointofentrytreatmentforremovalofdissolvedmnfenomandhardnessfromdomesticgroundwatersupplies AT barbeaubenoit hybridhollowfibernanofiltrationcalcitecontactoranovelpointofentrytreatmentforremovalofdissolvedmnfenomandhardnessfromdomesticgroundwatersupplies |