Cargando…

Antimicrobial effects of microwave‐induced plasma torch (MiniMIP) treatment on Candida albicans biofilms

The susceptibility of Candida albicans biofilms to a non‐thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave‐induced plasma torch (Mi...

Descripción completa

Detalles Bibliográficos
Autores principales: Handorf, Oliver, Schnabel, Uta, Bösel, André, Weihe, Thomas, Bekeschus, Sander, Graf, Alexander Christian, Riedel, Katharina, Ehlbeck, Jörg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680639/
https://www.ncbi.nlm.nih.gov/pubmed/31264377
http://dx.doi.org/10.1111/1751-7915.13459
Descripción
Sumario:The susceptibility of Candida albicans biofilms to a non‐thermal plasma treatment has been investigated in terms of growth, survival and cell viability by a series of in vitro experiments. For different time periods, the C. albicans strain SC5314 was treated with a microwave‐induced plasma torch (MiniMIP). The MiniMIP treatment had a strong effect (reduction factor (RF) = 2.97 after 50 s treatment) at a distance of 3 cm between the nozzle and the superior regions of the biofilms. In addition, a viability reduction of 77% after a 20 s plasma treatment and a metabolism reduction of 90% after a 40 s plasma treatment time were observed for C. albicans. After such a treatment, the biofilms revealed an altered morphology of their cells by atomic force microscopy (AFM). Additionally, fluorescence microscopy and confocal laser scanning microscopy (CLSM) analyses of plasma‐treated biofilms showed that an inactivation of cells mainly appeared on the bottom side of the biofilms. Thus, the plasma inactivation of the overgrown surface reveals a new possibility to combat biofilms.