Cargando…
Statistical Workflow for Feature Selection in Human Metabolomics Data
High-throughput metabolomics investigations, when conducted in large human cohorts, represent a potentially powerful tool for elucidating the biochemical diversity underlying human health and disease. Large-scale metabolomics data sources, generated using either targeted or nontargeted platforms, ar...
Autores principales: | Antonelli, Joseph, Claggett, Brian L., Henglin, Mir, Kim, Andy, Ovsak, Gavin, Kim, Nicole, Deng, Katherine, Rao, Kevin, Tyagi, Octavia, Watrous, Jeramie D., Lagerborg, Kim A., Hushcha, Pavel V., Demler, Olga V., Mora, Samia, Niiranen, Teemu J., Pereira, Alexandre C., Jain, Mohit, Cheng, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680705/ https://www.ncbi.nlm.nih.gov/pubmed/31336989 http://dx.doi.org/10.3390/metabo9070143 |
Ejemplares similares
-
Quantitative Comparison of Statistical Methods for Analyzing Human Metabolomics Data
por: Henglin, Mir, et al.
Publicado: (2022) -
A Single Visualization Technique for Displaying Multiple Metabolite–Phenotype Associations
por: Henglin, Mir, et al.
Publicado: (2019) -
Mapping metabolic oscillations during cell cycle progression
por: Roci, Irena, et al.
Publicado: (2020) -
Mapping choline metabolites in normal and transformed cells
por: Roci, Irena, et al.
Publicado: (2020) -
Sex Differences in Blood Pressure Associations With Cardiovascular Outcomes
por: Ji, Hongwei, et al.
Publicado: (2021)