Cargando…
Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens
SIMPLE SUMMARY: Olive pomace (OP) represents an important source of bioactive compounds which have been successfully used for animal nutrition. In this study, we elucidate the whole transcriptome of laying hens fed with a dried OP (DOP)-supplemented diet using an RNA sequencing approach. We found th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680721/ https://www.ncbi.nlm.nih.gov/pubmed/31284659 http://dx.doi.org/10.3390/ani9070427 |
Sumario: | SIMPLE SUMMARY: Olive pomace (OP) represents an important source of bioactive compounds which have been successfully used for animal nutrition. In this study, we elucidate the whole transcriptome of laying hens fed with a dried OP (DOP)-supplemented diet using an RNA sequencing approach. We found that DOP modulates several biological pathways mainly related to inflammatory response and cholesterol biosynthesis. Consistent with the gene expression data, we noted a decrease of egg yolk cholesterol. Thus, our study provides evidence that a DOP-supplemented diet improves egg quality and, at the same time, ameliorates inflammatory animal status. ABSTRACT: Olive pomace (OP) represents one of the by-products of the olive industry and represents an important source of bioactive compounds. This characteristic makes OP a potential feed supplement in livestock nutrition. Thus, in the last years, several studies have been published to evaluate the productive traits following OP supplementation in animal diets; however, relatively little is known from a molecular biology standpoint. Therefore, in this study, we report the RNA-sequencing analysis of laying hens fed with a 10% dried OP (DOP) supplementation. Applying a false discovery rate (FDR) <0.05 and a Log(2)Fc either less than −1.5 or higher than +1.5, we identified 264 differentially regulated genes (DEGs) between the non-supplemented diet control group (CTR) and the DOP group. Using the 264 DEGs to identify enriched biological pathways, we noted that cholesterol biosynthesis showed the highest enrichment followed by several pathways related to immune response and inflammation. As a consequence, when we quantified the cholesterol amount in yolk egg, we found a significant reduction in the DOP vs. the CTR group (p < 0.05). In conclusion, this study shows that DPO affects gene expression in laying hens, which is directly correlated with cholesterol decrease and can potentially ameliorate health status influencing immune response and inflammation. |
---|