Cargando…

Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l–lactide) (PLLA)–Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization

The present work focuses on the preparation of poly(l–lactide)–magnesium oxide whiskers (PLLA–MgO) composites by the in-situ polymerization method for bone repair and implant. PLLA–MgO composites were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differenti...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Hui, Zhao, Yun, Yang, Jinjun, Li, Xiao, Yang, Xiaoxian, Sasikumar, Yesudass, Zhou, Zhiyu, Chen, Minfang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680788/
https://www.ncbi.nlm.nih.gov/pubmed/31269645
http://dx.doi.org/10.3390/polym11071123
Descripción
Sumario:The present work focuses on the preparation of poly(l–lactide)–magnesium oxide whiskers (PLLA–MgO) composites by the in-situ polymerization method for bone repair and implant. PLLA–MgO composites were evaluated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and solid-state (13)C and (1)H nuclear magnetic resonance spectroscopy (NMR). It was found that the whiskers were uniformly dispersed in the PLLA matrix through the interfacial interaction bonding between PLLA and MgO; thereby, the MgO whisker was found to be well-distributed in the PLLA matrix, and biocomposites with excellent interface bonding were produced. Notably, the MgO whisker has an effect on the crystallization behavior and mechanical properties; moreover, the in vivo degradation of PLLA–MgO composites could also be adjusted by MgO. These results show that the whisker content of 0.5 wt % and 1.0 wt % exhibited a prominent nucleation effect for the PLLA matrix, and specifically 1.0 wt % MgO was found to benefit the enhanced mechanical properties greatly. In addition, the improvement of the degrading process of the composite illustrated that the MgO whisker can effectively regulate the degradation of the PLLA matrix as well as raise its bioactivity. Hence, these results demonstrated the promising application of PLLA–MgO composite to serve as a biomedical material for bone-related repair.