Cargando…

Effects of the Ratio of Insoluble Fiber to Soluble Fiber in Gestation Diets on Sow Performance and Offspring Intestinal Development

SIMPLE SUMMARY: Gestating sows fed a diet rich in dietary fiber show improved performance. Dietary fiber is composed of insoluble fiber and soluble fiber. The ratio of insoluble to soluble fiber may affect overall diet utilization and influence sow performance. Maternal nutrition significantly affec...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yang, Zhang, Lijia, Liu, Haoyu, Yang, Yi, He, Jiaqi, Cao, Meng, Yang, Min, Zhong, Wei, Lin, Yan, Zhuo, Yong, Fang, Zhengfeng, Che, Lianqiang, Feng, Bin, Xu, Shengyu, Li, Jian, Zhao, Xilun, Jiang, Xuemei, Wu, De
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6680925/
https://www.ncbi.nlm.nih.gov/pubmed/31284518
http://dx.doi.org/10.3390/ani9070422
Descripción
Sumario:SIMPLE SUMMARY: Gestating sows fed a diet rich in dietary fiber show improved performance. Dietary fiber is composed of insoluble fiber and soluble fiber. The ratio of insoluble to soluble fiber may affect overall diet utilization and influence sow performance. Maternal nutrition significantly affects offspring intestinal development; therefore, we investigated the effects of the ratio of insoluble to soluble fiber in gestation diets on sow performance and offspring intestinal development. Our results suggested that, when the dietary fiber levels were the same in gestation diets, the ratio of insoluble to soluble fiber affected the development of intestinal morphology and enzymatic activity related to nutrient digestion and absorption, and consequently affected the average daily gain during lactation and average piglet body weight at weaning. When the ratio of insoluble to soluble fiber was 3.89 in the gestation diet, higher average piglet body weight and litter weight at weaning were observed. These results may provide guidance for the application of fiber in pig production. ABSTRACT: To investigate the effects of the ratio of insoluble fiber to soluble fiber (ISF:SF) on sow performance and piglet intestinal development, we randomly assigned 64 gilts to four treatments comprising diets with the same level of dietary fiber, but different ISF:SF values of 3.89 (T1), 5.59 (T2), 9.12 (T3), and 12.81 (T4). At birth and weaning, six piglets per treatment at each phase were slaughtered for sampling. As ISF:SF increased, the mean piglet body weight (BW) at weaning and piglet BW gain, which were all significantly higher in T1 and T2 compared with T3 and T4 (p < 0.05), showed a linear decrease (p < 0.05); the crypt depth of the jejunum in weaned piglets linearly increased, whereas the duodenal weight, jejunal villus height, and villus height/crypt depth in newborn piglets and enzymatic activity of lactase, sucrase, and maltase linearly decreased (p < 0.05). No differences were observed in the yield and composition of milk (p > 0.05). Moreover, when the ISF:SF was 3.89 in gestation diets, higher piglet BW at weaning occurred, possibly because the ISF:SF affected development and enzymatic activity in the small intestine—effects related to digestion and absorption of nutrients—and consequently enhanced piglet BW gain.