Cargando…
Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery
Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681002/ https://www.ncbi.nlm.nih.gov/pubmed/31330813 http://dx.doi.org/10.3390/brainsci9070173 |
Sumario: | Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed for early insights in functional localization to improve surgical outcomes, but has since expanded into exploring fundamental aspects of human cognition including reward processing, language, the storage and retrieval of memory, decision-making, as well as sensory and motor processing. The increasing use of chronic neuromodulation, via deep brain stimulation, for a spectrum of neurological and psychiatric conditions has in tandem led to increased opportunity for linking theories of cognitive processing and neural circuit function. Our purpose here is to motivate the neuroscience and neurosurgical community to capitalize on the opportunities that this next decade will bring. To this end, we will highlight recent studies that have successfully leveraged invasive recordings during deep brain stimulation surgery to advance our understanding of human cognition with an emphasis on reward processing, improving clinical outcomes, and informing advances in neuromodulatory interventions. |
---|