Cargando…
Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites
Detonation nanodiamonds, also known as ultradispersed diamonds, possess versatile chemically active surfaces, which can be adjusted to improve their interaction with elastomers. Such improvements can result in decreased dielectric and viscous losses of the composites without compromising other in-ru...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681107/ https://www.ncbi.nlm.nih.gov/pubmed/31261923 http://dx.doi.org/10.3390/polym11071104 |
_version_ | 1783441655716642816 |
---|---|
author | Shakun, Alexandra Anyszka, Rafal Sarlin, Essi Blume, Anke Vuorinen, Jyrki |
author_facet | Shakun, Alexandra Anyszka, Rafal Sarlin, Essi Blume, Anke Vuorinen, Jyrki |
author_sort | Shakun, Alexandra |
collection | PubMed |
description | Detonation nanodiamonds, also known as ultradispersed diamonds, possess versatile chemically active surfaces, which can be adjusted to improve their interaction with elastomers. Such improvements can result in decreased dielectric and viscous losses of the composites without compromising other in-rubber properties, thus making the composites suitable for new demanding applications, such as energy harvesting. However, in most cases, surface modification of nanodiamonds requires the use of strong chemicals and high temperatures. The present study offers a less time-consuming functionalization method at 40 °C via reaction between the epoxy-rings of the modifier and carboxylic groups at the nanodiamond surface. This allows decorating the nanodiamond surface with chemical groups that are able to participate in the crosslinking reaction, thus creating strong interaction between filler and elastomer. Addition of 0.1 phr (parts per hundred rubber) of modified nanodiamonds into the silicone matrix results in about fivefold decreased electric losses at 1 Hz due to a reduced conductivity. Moreover, the mechanical hysteresis loss is reduced more than 50% and dynamic loss tangent at ambient temperature is lowered. Therefore, such materials are recommended for the dielectric energy harvesting application, and they are expected to increase its efficiency. |
format | Online Article Text |
id | pubmed-6681107 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66811072019-08-09 Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites Shakun, Alexandra Anyszka, Rafal Sarlin, Essi Blume, Anke Vuorinen, Jyrki Polymers (Basel) Article Detonation nanodiamonds, also known as ultradispersed diamonds, possess versatile chemically active surfaces, which can be adjusted to improve their interaction with elastomers. Such improvements can result in decreased dielectric and viscous losses of the composites without compromising other in-rubber properties, thus making the composites suitable for new demanding applications, such as energy harvesting. However, in most cases, surface modification of nanodiamonds requires the use of strong chemicals and high temperatures. The present study offers a less time-consuming functionalization method at 40 °C via reaction between the epoxy-rings of the modifier and carboxylic groups at the nanodiamond surface. This allows decorating the nanodiamond surface with chemical groups that are able to participate in the crosslinking reaction, thus creating strong interaction between filler and elastomer. Addition of 0.1 phr (parts per hundred rubber) of modified nanodiamonds into the silicone matrix results in about fivefold decreased electric losses at 1 Hz due to a reduced conductivity. Moreover, the mechanical hysteresis loss is reduced more than 50% and dynamic loss tangent at ambient temperature is lowered. Therefore, such materials are recommended for the dielectric energy harvesting application, and they are expected to increase its efficiency. MDPI 2019-06-29 /pmc/articles/PMC6681107/ /pubmed/31261923 http://dx.doi.org/10.3390/polym11071104 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Shakun, Alexandra Anyszka, Rafal Sarlin, Essi Blume, Anke Vuorinen, Jyrki Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title | Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title_full | Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title_fullStr | Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title_full_unstemmed | Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title_short | Influence of Surface Modified Nanodiamonds on Dielectric and Mechanical Properties of Silicone Composites |
title_sort | influence of surface modified nanodiamonds on dielectric and mechanical properties of silicone composites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681107/ https://www.ncbi.nlm.nih.gov/pubmed/31261923 http://dx.doi.org/10.3390/polym11071104 |
work_keys_str_mv | AT shakunalexandra influenceofsurfacemodifiednanodiamondsondielectricandmechanicalpropertiesofsiliconecomposites AT anyszkarafal influenceofsurfacemodifiednanodiamondsondielectricandmechanicalpropertiesofsiliconecomposites AT sarlinessi influenceofsurfacemodifiednanodiamondsondielectricandmechanicalpropertiesofsiliconecomposites AT blumeanke influenceofsurfacemodifiednanodiamondsondielectricandmechanicalpropertiesofsiliconecomposites AT vuorinenjyrki influenceofsurfacemodifiednanodiamondsondielectricandmechanicalpropertiesofsiliconecomposites |