Cargando…

Potential Phytotoxic Effect of Essential Oil of Non-Native Species Impatiens parviflora DC.

Impatiens parviflora is non-native invasive plant species occupying large areas all over the Europe and threatens native communities by altering their species composition and reducing native biodiversity. The factor responsible for its spreading could be explained by releasing biochemical to the env...

Descripción completa

Detalles Bibliográficos
Autores principales: Jurová, Jana, Matoušková, Martina, Wajs-Bonikowska, Anna, Kalemba, Danuta, Renčo, Marek, Sedlák, Vincent, Gogaľová, Zuzana, Poráčová, Janka, Šalamún, Peter, Gruľová, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681315/
https://www.ncbi.nlm.nih.gov/pubmed/31340441
http://dx.doi.org/10.3390/plants8070241
Descripción
Sumario:Impatiens parviflora is non-native invasive plant species occupying large areas all over the Europe and threatens native communities by altering their species composition and reducing native biodiversity. The factor responsible for its spreading could be explained by releasing biochemical to the environment. On the other hands, high demand on secondary metabolites as potential source of new ecofriendly biocides could be beneficial. The analysis of I. parviflora essential oil (EO) led us to identify more than 60 volatiles. The main compound was hexahydrofarnesyl acetone, other dominant components were phytol, carvacrol, germacra-4(15),5,10(14)-trien-1-α-ol, and pentacosane. The potential phytotoxic effect of I. parviflora EO collected in two vegetation periods (summer and autumn) was evaluated on seed germination and root elongation of three dicot species (Raphanus sativus, Lepidum sativum, and Lactuca sativa) and on one monocot species (Triticum aestivum). The seed germination of only one dicot species, L. sativa, was affected by both EOs. In contrast, seed germination of monocot species T. aestivum was influenced only by the highest doses of EOs isolated from I. parviflora in autumn. The root elongation of tested plant species was less influenced by I. parviflora EOs. L. sativum showed sensitivity to one dose of EOs hydrodistilled in summer, while the monocot species was influenced by both EOs samples in highest doses. Our findings revealed that I. parviflora contained phenolics that were phytotoxic to the germination of some plant species, mainly at higher EOs doses, while root elongation of tested plants was not suppressed by essential oils.